فایل جدید


||||||||||||||
خانه » نتایج جستجو برای: تحقیق (صفحه ی 4)

نتایج جستجو برای: تحقیق

دانلود تحقیق کامل درباره نیروگاه هسته ای

دانلود تحقیق کامل درباره نیروگاه هسته ای

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۶

 

نیروگاه هسته ای

نیروگاه اتمی در واقع یک بمب اتمی است که به کمک میله‌های مهارکننده و خروج دمای درونی بوسیله مواد ‏خنک کننده مثل آب و گاز ، تحت کنترل در آمده است. اگر روزی این میله‌ها و یا پمپهای انتقال دهنده مواد ‏خنک کننده وظیفه خود را درست انجام ندهند، سوانح متعددی بوجود می‌آید و حتی ممکن است نیروگاه نیز ‏منفجر شود، مانند فاجعه نیروگاه چرنوبیل شوروی سابق.

دید کلی

طی سالهای گذشته اغلب کشورها به استفاده از این نوع انرژی هسته‌ای تمایل داشتند و حتی دولت ایران ۱۵ ‏نیروگاه اتمی به کشورهای آمریکا ، فرانسه و آلمان سفارش داده بود. ولی خوشبختانه بعد از وقوع دو حادثه ‏مهمتری میل آیلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبیل (Tchernobyl) در روسیه ‏در ۲۶ آوریل ۱۹۸۶، نظر افکار عمومی نسبت به کاربرد اتم برای تولید انرژی تغییر کرد و ترس و وحشت از ‏جنگ اتمی و به خصوص امکان تهیه بمب اتمی در جهان سوم، کشورهای غربی را موقتا مجبور به تجدید نظر در ‏برنامه‌های اتمی خود کرد.

ساختار نیروگاه اتمی

نیروگاه اتمی از مواد مختلفی شکل گرفته است که همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند. ‏این مواد عبارتند از:

ماده سوخت

ماده سوخت متشکل از اورانیوم طبیعی ، اورانیوم غنی شده ، اورانیوم و پلوتونیم است. که سوختن اورانیوم بر ‏اساس واکنش شکافت هسته‌ای صورت می‌گیرد.‏

نرم کننده‌ها

‎‏نرم کننده‌ها موادی هستند که برخورد نوترون های حاصل از شکست با آنها الزامی است و ‏برای کم کردن انرژی این نوترون ها به کار می روند. زیرا احتمال واکنش شکست پی در پی به ازای ‏نوترون های کم انرژی بیشتر می شود. آب سنگین (D2O) یا زغال سنگ (گرافیت) به عنوان نرم کننده نوترون ‏بکار برده می‌شوند.‏

میله‌های مهارکننده

این میله‌ها از مواد جاذب نوترون درست شده‌اند و وجود آنها در داخل راکتور اتمی ‏الزامی است و مانع افزایش ناگهانی تعداد نوترونها در قلب راکتور می‌شوند. اگر این میله‌ها کار اصلی خود را ‏انجام ندهند، در زمانی کمتر از چند هزارم ثانیه قدرت راکتور چند برابر شده و حالت انفجاری یا دیورژانس ‏راکتور پیش می‌آید. این میله ها می توانند از جنس عنصر کادمیم و یا بور باشند.‏

مواد خنک کننده یا انتقال دهنده انرژی حرارتی

این مواد انرژی حاصل از شکست اورانیوم را به خارج ‏از راکتور انتقال داده و توربینهای مولد برق را به حرکت در می آورند و پس از خنک شدن مجدداً به داخل ‏راکتور برمی گردند. البته مواد در مدار بسته و محدودی عمل می کنند و با خارج از محیط رآکتور تماسی ندارند. ‏این مواد می توانند گاز CO2 ، آب ، آب سنگین ، هلیوم گازی و یا سدیم مذاب باشند.‏

طرز کار نیروگاه اتمی

عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در ‏این پدیده با ورود یک نوترون کم انرژی به داخل هسته ایزوتوپ ۲۳۵U عمل شکست انجام می گیرد و ‏انرژی فراوانی تولید می کند. بعد از ورود نوترون به درون هسته اتم ، ناپایداری در هسته به وجود آمده و بعد از ‏لحظه بسیار کوتاهی هسته اتم شکسته شده و تبدیل به دو تکه شکست و تعدادی نوترون می‌شود.

بطور متوسط تعداد نوترونها به ازای هر ۱۰۰ اتم شکسته شده ۲۴۷ عدد است و این نوترونها اتمهای ‏دیگر را می‌شکنند و اگر کنترلی در مهار کردن تعداد آنها نباشد واکنش شکست در داخل توده اورانیوم به ‏صورت زنجیره‌ای انجام می‌شود که در زمانی بسیار کوتاه منجر به انفجار شدیدی خواهد شد. در واقع ورود ‏نوترون به درون هسته اتم اورانیوم و شکسته شدن آن توام با انتشار انرژی معادل با ‏‎ Mev‎‏۲۰۰ میلیون الکترون ‏ولت است.

این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یک گرم از اورانیوم در حدود صدها هزار مگاوات ‏است. که اگر به صورت زنجیره‌ای انجام شود، در کمتر از هزارم ثانیه مشابه بمب اتمی عمل خواهد کرد. اما ‏اگر تعداد شکستها را در توده اورانیوم و طی زمان محدود کرده به نحوی که به ازای هر شکست ، اتم بعدی ‏شکست حاصل کند شرایط یک نیروگاه اتمی بوجود می‌آید. ‏

نمونه عملی

نیروگاهی که دارای ۱۰ تن اورانیوم طبیعی است قدرتی معادل با ۱۰۰ مگاوات خواهد داشت و بطور متوسط ‏‏۱۰۵ گرم ۲۳۵U در روز در این نیروگاه شکسته می شود و همانطور که قبلا گفته شد در اثر جذب ‏نوترون بوسیله ایزوتوپ ۲۳۹U ، ۲۳۸U بوجود می‌آمد که بعد از دو بار انتشار ذرات بتا (‏الکترون) به ۲۳۹Pu تبدیل می‌شود که خود مانند ۲۳۵U شکست پذیر است. در این عمل ۷۰ گرم ‏پلتونیوم حاصل می‌شود.

ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترونهای موجود در نیروگاه زیاد باشند مقدار جذب به مراتب ‏بیشتر از این خواهد بود و مقدار پلتونیومهای بوجود آمده از مقدار آنهایی که شکسته می‌شوند بیشتر خواهند ‏بود. در چنین حالتی بعد از پیاده کردن میله‌های سوخت می‌توان پلتونیوم بوجود آمده را از اورانیوم و ‏فرآورده‌های شکست را به کمک واکنشهای شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره کرد.

نیروگاه حرارتی جهت تولید انرژی الکتریکی بکار می‌رود که در عمل پره‌های توربین بخار توسط فشار زیاد بخار آب ، به حرکت در آمده و ژنراتور را که با توربین کوپل شده است، به چرخش در می‌آورد. در نتیجه ژنراتور انرژی الکتریکی تولید می‌کند. نیروگاه حرارتی به مقدار زیادی آب نیاز دارد. در نتیجه در محلهایی که آب به فراوانی یافت می‌شود، ترجیحا از این نوع نیروگاه استفاده می‌شود. چون انرژی الکتریکی را به روشهای دیگری ، مثل انرژی آب در پشت سدها (توربین آبی) ، انرژی باد (توربین بادی) ، انرژی سوخت (توربین گازی) و انرژی اتمی هم می‌توان تهیه کرد. سوخت نیروگاه حرارتی شامل ، فروت و یا گازوئیل طبیعی است.



ادامه مطلب

دانلود تحقیق کامل درباره نیروگاه حرارتی

دانلود تحقیق کامل درباره نیروگاه حرارتی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۷

 

نیروگاه حرارتی

مقدمه

نیروگاه حرارتی جهت تولید انرژی الکتریکی بکار می‌رود که در عمل پره‌های توربین بخار توسط فشار زیاد بخار آب ، به حرکت در آمده و ژنراتور را که با توربین کوپل شده است، به چرخش در می‌آورد. در نتیجه ژنراتور انرژی الکتریکی تولید می‌کند. نیروگاه حرارتی به مقدار زیادی آب نیاز دارد. در نتیجه در محلهایی که آب به فراوانی یافت می‌شود، ترجیحا از این نوع نیروگاه استفاده می‌شود. چون انرژی الکتریکی را به روشهای دیگری ، مثل انرژی آب در پشت سدها (توربین آبی) ، انرژی باد (توربین بادی) ، انرژی سوخت (توربین گازی) و انرژی اتمی هم می‌توان تهیه کرد. سوخت نیروگاه حرارتی شامل ، فروت و یا گازوئیل طبیعی است.

مشخصات فنی نیروگاه

سوخت

سوخت اصلی نیروگاه ، سوخت سنگین (مازوت) می‌باشد که توسط تانکرها حمل و از طریق ایستگاه تخلیه سوخت در سه مخزن ۳۳۰۰۰ متر مکعبی ذخیره می‌گردد. سوخت راه اندازی ، سوخت سبک (گازوئیل) است که در یک مخزن ۴۳۰ متر مکعبی نگهداری می‌شود.

آب

آب مصرفی نیروگاه ، جهت تولید بخار و مصرف برج خنک کن و سیستم آتش نشانی ، از طریق چاه عمیق تامین می‌گردد.

سیستم خنک کن

برج خنک کن نیروگاه از نوع تر می‌باشد و ۱۸ عدد فن (خنک کن) دارد که هر یک دارای الکتروموتوری به قدرت ۱۳۲kw و سرعت سرعت ۱۴۱RPM می‌باشد و بوسیله دو عدد پمپ توسط لوله‌ای به قطر ۵٫۲ متر آب مورد نیاز خنک کن تامین می‌گردد. دمای آب برگشتی در برج خنک کن ۲۹٫۶ درجه سانتیگراد و دمای آب خروجی از برج ۲۱٫۶ درجه سانتیگراد می‌باشد.

سیستم تصفیه آب

سیستم تصفیه آب جهت برج خنک کن

آب لازم جهت برج خنک کن بایستی فاقد املاحی باشد که سریعا در لوله‌های کندانسور رسوب می‌کنند (از قبیل بی‌کربناتها). این املاح با افزودن کلرورفریک ، آب آهک و آلومینات سدیم گرفته می‌شود و سپس رسوبات جمع شده توسط یک جاروب جمع کننده به بیرون منتقل می‌شوند. به این آب که بدون سختی بی کربنات باشد، آب نرم می‌گویند. آب نرم وارد دو استخر ذخیره شده و از آنجا توسط پمپهایی جهت تامین کمبود آب به برج خنک کن فرستاده می‌شود. برای از بین بردن خزه و جلبک در این استخر ، سیستم تزریق کلر طراحی شده است.

سیستم تصفیه آب جهت تولید بخار

چون آب مورد نیاز برای تولید بخار و جبران کمبود سیکل آب و بخار بایستی کیفیت بسیار بالایی داشته باشد، لذا برای این منظور از یک سیستم مشترک برای هر دو واحد استفاده می‌شود. بعد از اینکه مقداری از سختی آب گرفته شد، وارد سه دستگاه فیلتر شنی می‌شود، سپس به مخزن ذخیره وارد و از آنجا توسط سه عدد پمپ به طرف فیلتر کربنی فعال فرستاده می‌شود، تا کلر موجود در آب بوسیله زغال فعال جذب شود. بعد از این فیلتر یک مبدل حرارتی در نظر گرفته شده که دمای آب را در ۲۵ درجه سانتیگراد ثابت نگه می‌دارد.

سپس این آب وارد دو دستگاه فیلتر ۵ میکرونی شده و ذراتی که قطر آنها بیشتر از ۵ میکرون می‌باشند، توسط این فیلترها جذب و وارد دو دستگاه ریورس اسمز می‌گردد. در این دستگاه ۹۰% املاح محلول در آب گرفته می‌شود. آب پس از این مرحله وارد مخزن زیرزمینی می‌گردد. سپس توسط سه پمپ به فیلترهای کاتیونی و آنیونی وارد شده و پس از تنظیم PH و کنترل از نظر شیمیایی به مخازن ذخیره آب وارد و مورد استفاده قرار می‌گیرد.

بویلر

بویلر نیروگاه دارای درام بالائی و پائینی بوده و به صورت گردش اجباری توسط سه عدد پمپ سیرکوله (Boiler Circulation Watepump) و کوره ، تحت فشار می‌باشد. درام بالایی معمولا به وزن ۱۱۰ تن در ارتفاع ۵۰٫۶ متری و ضخامت جداره ۱۱ سانتیمتر می‌باشد. بویلر دارای ۱۶ مشعل هست که در چهار طبقه و در چهار گوشه با زاویه ثابت قرار گرفته‌اند. مشعلهای ردیف پائین برای هر دو سوخت مازوت و گازوئیل بکار می‌رود.

توربین

نیروگاه از نوع ترکیب متوالی در یک امتداد (Tadem Compound) و دارای سه سیلندر فشار قوی ، فشار متوسط و فشار ضعیف می‌باشد که توربین فشار قوی و فشار متوسط در یک پوسته قرار گرفته و در پوسته دیگر توربینهای فشار ضعیف قرار دارند. توربین فشار قوی ۸ طبقه و توربین فشار متوسط ۵ طبقه و توربین فشار ضعیف با دو جریان متقارن و هر یک دارای ۵ طبقه است. بخار از طریق دو عدد شیر اصلی در دو طرف توربین و شش عدد شیر کنترل وارد توربین فشار قوی شده و بعد از انبساط در چندین طبقه از توربین به بویلر بر می‌گردد. سپس وارد توربین فشار متوسط شده و بعد از انبساط توسط یک لوله مشترک وارد توریبن فشار ضعیف گردیده و به طرف کندانسور می‌رود.

کندانسور

کندانسور نیروگاه از نوع سطحی یک عبوری با جعبه آب مجزا می‌باشد که در زیر توریبن فشار ضعیف قرار گرفته است. برای ایجاد خلا کندانسور از دو نوع سیستم استفاده می‌شود که سیستم اول در موقع راه اندازی و توسط یک مکنده هوا انجام می‌یابد. در طول بهره برداری خلا لازم توسط دو دستگاه پمپ تامین می‌گردد که این پمپها فشار داخل کندانسور را کاهش می‌دهند.

ژنراتور

ژنراتور طوری طراحی شده است که در مقابل اتصال کوتاه و نوسانات ناگهانی بار و احیانا انفجار هیدروژن در داخل ماشین مقاومت کافی داشته باشد. سیستم تحریک آن شامل یک اکساتیر پیلوت (Pilot exiter) با ظرفیت ۴۵ کیلوولت آمپر می‌باشد و جریان تحریک اکسایتر پیلوت در لحظه



ادامه مطلب

دانلود تحقیق کامل درباره نیروهای الکتریکی و مغناطیسی ۵۲ص

دانلود تحقیق کامل درباره نیروهای الکتریکی و مغناطیسی ۵۲ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۵۲

 

مقدمه

 

در این نوشته هدف اصلی توجیه اثر متقابل فوتون و گراویتون با توجه به نظریه سی. پی. اچ است. نخستین برخورد ها با اثر فوتوالکتریک از دیدگاه الکترومغناطیس کلاسیک صورت گرفت که توانایی توجیه آن را نداشت. سپس انیشتین این پدیده را با توجه به دیدگاه کوانتومی توجیه کرد. بنابراین نخست میدانها و امواج الکترومغناطیسی کلاسیک را بطور فشرده بیان کرده، آنگاه با ذکر نارسایی آن به تشریح پدیده فوتوالکتریک از دیدگاه انیشتین می پردازم و سرانجام هر سه اثر فوتوالکتریک، اثر کامپتون و تولید و واپاشی زوج ماده – پاد ماده را با توجه به نظریه سی. پی. اچ. بررسی خواهم کرد. و سرانجام تلاش خواهد شد تا وحدت نیروهای الکترومغناطیس و گرانش را نتیجه گیری کنیم.

 

نیروهای الکتریکی و مغناطیسی

 

نیروهای بین بارهای الکتریکی را می توان به دو نوع تقسیم کرد. دو بار نقطه ای ساکن یا متحرک به یکدیگر نیروی الکتریکی وارد می کنند که از رابطه ی زیر به دست می آید:

 

Fe=kqQ/r2

 

که در آن

 

وقتی دو بار الکتریکی نسبت به ناظری در حرکت باشند، علاوه بر نیروی الکتریکی، نیروی مغناطیسی نیز بر یکدیگر وارد می کنند.

از آنجاییکه بررسی نیروها با استفاده از مفاهیم میدان عمیق تر و ساده تر است، می توان گفت که هر بار الکتریکی در اطراف خود یک میدان الکتریکی ایجاد می کند که شدت آن در فاصله r از آن، از رابطه ی زیر به دست می آید:

 

E=kq/r2

 

حال اگر ذره ی باردار حرکت کند، در اطراف آن علاوه بر میدان الکتریکی، یک میدان مغناطیسی نیز ایجاد می شود که وجود چنین میدان مغناطیسی بصورت تجربی قابل اثبات است اگر ذره ای با بار الکتریکی q در یک میدان مغناطیسی B و با سرعت vحرکت کند، نیرویی بر آن وارد می شود که بر صفحه ی B, v عمود است که از رابطه ی زیر به دست می آید:

 

F=qvxB

 

از این رو، بار q که به فاصله ی rازQقرار دارد و با سرعتvحرکت می کند، یک میدان مغناطیسی در محلQتولید می کند که از رابطه ی زیر به دست می آید :

 

 بطور خلاصه، در نقطه ای که میدان الکتریکی و مغناطیسی E , Bوجود دارد، نیروی الکترومغناطیسی وارد بر ذره باردار، با بار qکه با سرعت vحرکت می کند برابر است با

 

میدانهای الکترومغناطیسی

 

در یک میدان الکتریکی موجود در فضا، به عنوان مثال در بین صفحات یک خازن باردار، انرژی الکتریکی وجود دارد. چگالی انرژی یا انرژی الکتریکی در واحد حجم از رابطه ی زیر به دست می آید :

 

 

 

بطور مشابه چگالی انرژی مغناطیسی مثلاً انرژی مغناطیسی در ناحیه بین قطب های یک آهنربا برابر است با

 

 

 

امواج الکترومغناطیسی

 

بار الکتریکی ساکن میدان الکتریکی می آفریند. اما بار الکتریکی متحرک علاوه بر میدان الکتریکی، میدان مغناطیسی نیز ایجاد می کند که در قانون آمپر بخوبی نشان داده شده است. بنابراین در اطراف یک بار الکتریکی متحرک دو میدان الکتریکی و مغناطیسی وجود دارد. یعنی با تغییر میدان الکتریکی، میدان مغناطیسی تولید می



ادامه مطلب

دانلود تحقیق کامل درباره نور

دانلود تحقیق کامل درباره نور

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۱۱

 

نور

ماهیت ذر‌ه‌ای

اسحاق نیوتن (Isaac Newton) در کتاب خود در رساله‌ای درباره نور نوشت پرتوهای نور ذرات کوچکی هستند که از یک جسم نورانی نشر می‌شوند. احتمالاً اسحاق نیوتن نور را به این دلیل بصورت ذره در نظر گرفت که در محیطهای همگن به نظر می‌رسد در امتداد خط مستقیم منتشر می‌شوند که این امر را قانون می‌نامند و یکی از مثالهای خوب برای توضیح آن بوجود آمدن سایه است.

ماهیت موجی

همزمان با نیوتن، کریسیتان هویگنس (Christiaan Huygens) (1695-1629) طرفدار توضیح دیگری بود که در آن حرکت نور به صورت موجی است و از چشمه‌های نوری به تمام جهات پخش می‌شود به خاطر داشته باشید که هویگنس با بکار بردن امواج اصلی و موجکهای ثانوی قوانین بازتاب و شکست را تشریح کرد. حقایق دیگری که با تصور موجی بودن نور توجیه می‌شوند پدیده‌های تداخلی هستند مانند به وجود آمدن فریزهای روشن و تاریک در اثر بازتاب نور از لایه‌های نازک و یا پراش نور در اطراف مانع.

 

ماهیت الکترومغناطیس

بیشتر به خاطر نبوغ جیمز کلارک ماکسول (James Clerk Maxwell) (1879-1831) است که ما امروزه می‌دانیم نور نوعی انرژی الکترومغناطیسی است که معمولاً به عنوان امواج الکترومغناطیسی توصیف می‌شود. گسترده کامل امواج الکترومغناطیسی شامل: موج رادیویی ، تابش فرو سرخ ، نور مرئی از قرمز تا بنفش ، تابش فرابنفش ، اشعه ایکس و اشعه گاما می‌باشد.

ماهیت کوانتومی نور

طبق نظریه مکانیک کوانتومی نور، که در دو دهه اول قرن بیستم بوسیله پلانک و آلبرت انیشتین و بور برای اولین بار پیشنهاد شد، انرژی الکترومغناطیسی کوانتیده است، یعنی جذب یا نشر انرژی میدان الکترومغناطیسی به مقادیر گسسته‌ای به نام “فوتون” انجام می‌گیرد.

نظریه مکملی

نظریه جدید نور شامل اصولی از تعاریف نیوتون و هویگنس است. بنابراین گفته می‌شود که نور خاصیت دو گانه‌ای دارد، برخی از پدیده‌ها مثل تداخل و پراش خاصیت موجی آنرا نشان می‌دهد و برخی دیگر مانند پدیده فوتوالکتریک ، پدیده کامپتون و … با خاصیت ذره‌ای نور قابل توضیح هستند.

 

تعریف واقعی نور چیست؟

تعریف دقیقی برای نور نداریم، جسم شناخته شده یا مدل مشخص که شبیه آن باشد وجود ندارد. ولی لازم نیست فهم هر چیز بر شباهت مبتنی باشد. نظریه الکترومغناطیسی و نظریه کوانتومی باهم ایجاد یک نظریه نامتناقض و بدون ابهام می‌کنند که تمام پدیده‌های نوری را می‌کنند. نظریه ماکسول درباره انتشار نور و بحث می‌کند در حالی که نظریه کوانتومی برهمکنش نور و ماده یا جذب و نشر آن را شرح می‌دهد ازآمیختن این دو نظریه ، نظریه جامعی که کوانتوم الکترودینامیک نام دارد، شکل می‌گیرد. چون نظریه‌های الکترومغناطیسی و کوانتومی علاوه بر پدیده‌های مربوط به تابش بسیاری از پدیده‌های دیگر را نیز تشریح می‌کنند منصفانه می‌توان فرض کرد که مشاهدات تجربی امروز را لااقل در قالب ریاضی جوابگو است. طبیعت نور کاملا شناخته شده است، اما باز هم این پرسش هست که واقعیت نور چیست؟

گسترده طول موجی نور

نور گستره طول موجی وسیعی دارد چون با نور مرئی کار می‌کنیم اغلب تصاویر و محاسبات در این ناحیه از گستره الکترومغناطیسی انجام می‌گیرد اما روشهای مورد بحث می‌تواند در تمام ناحیه الکترومغناطیسی مورد استفاده قرار گیرند. ناحیه نور مرئی بر حسب طول موج از حدود ۴۰۰ نانومتر (آبی) تا ۷۰۰ نانومتر (قرمز) گسترده است که در وسط آن طول موج ۵۵۵ نانومتر (نور زرد) که چشم انسان بیشترین حساسیت را نسبت به آن دارد یک ناحیه پیوسته که ناحیه مرئی را در بر می‌گیرد و تا فرو سرخ دور گسترش می‌یابد.

خواص نور و نحوه تولید

سرعت نور در محیطهای مختلف متفاوت است که بیشترین آن در خلاء و یا بطور تقریبی در هوا است، در داخل ماده به پارامترهای متفاوتی بر حسب حالت و خواص الکترومغناطیسی ماده وابسته است. بوسیله کاواک جسم سیاه می‌توان تمام ناحیه طول موجی نور را تولید نمود. در طبیعت در طول موجهای مختلف مشاهده شده اما مشهورترین آن نور سفید است که یک نور مرکبی از سایر طول موجها می‌باشد. تک طول موجها آنرا بوسیله لامپهای تخلیه الکتریکی که معرف طیفهای اتمی موادی هستند که داخلشان تعبیه شده می‌توان تولید کرد.

 

مقدار سرعت نور:



ادامه مطلب

دانلود تحقیق کامل درباره نور و امواج الکترومغناطیس

دانلود تحقیق کامل درباره نور و امواج الکترومغناطیس

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۲۶

 

نور و امواج الکترومغناطیس

مقدمه

امروزه می دانیم که نور یک موج الکترمغناطیسی است و بخش بسیار کوچکی از طیف الکترمغناطیسی را تشکیل می دهد. بنابراین برای شناخت نور بایستی به بررسی امواج الکترومغناطیسی پرداخت. اما از آنجاییکه مکانیک کلاسیک قادر به توضیح کامل امواج الکترومغناطیسی نیست، الزاماً بایستی به مکانیک کوانتوم مراجعه کرد. اما قبل از وارد شدن به مکانیک کوانتوم لازم است با برخی از خواص نور آشنا شد و دلیل نارسایی مکانیک کلاسیک را دانست. لذا در این فصل دانش نور را تا پیش از ارائه شدن رابطه ی مشهور پلانک بررسی می کنیم و در فصل جداگانه ای خواص امواج الکترومغناطیسی بعد از مکانیک کوانتوم و نسبیت بررسی خواهد شد.

خواص نور

نخستین مسئله ای مهم جلوه می کرد این بود که نور چیست؟ از آنجاییکه عامل دیدن بود و در تاریکی چیزی دیده نمی شد، سئوال این بود که نور چیست؟ چرا می بینیم و نور چگونه و توسط چه چیرزی تولید می شود؟ بالاخره این نظریه پیروز شد که نور توسط اجسام منیر نظیر خورشید و مشعل تولید می شود. بعد از آن مسئله انعکاس نور مورد توجه قرار گرفت و اینکه چرا برخی از اجسام بهتر از سایر اجسام نور را باز تابش می کنند؟ چرا نور از برخی اجسام عبور می کند و از برخی دیگر عبور نمی کند؟ چرا نور علاوه بر آنکه سبب دیدن است موجب گرم شدن نیز می شود؟ نور چگونه منتقل می شود؟ سرعت آن چقدر است؟ و سرانجام ماهیت نور و نحوه ی انتقال آن چیست؟

نخستین آزمایش مهم نور توسط نیوتن در سال ۱۶۶۶ انجام شد. وی یک دسته اشعه نور خورشید را که از شکاف باریکی وارد اتاق تاریکی شده بود، بطور مایل بر وجه یک منشور شیشه ای مثلث القاعده ای تابانید. این دسته هنگام ورود در شیشه منحرف شد و سپس هنگام خروج از وجه دوم منشور باز هم در همان جهت منحرف شد.

نیوتن دسته اشعه خارج شده را بر یک پرده سفید انداخت. وی مشاهده کرد که به جای تشکیل یک لکه سفید نور، دسته اشعه در نوار رنگینی که به ترتیب مرکب از رنگهای سرخ، نارنجی، زرد، سبز، آبی و بنفش است پراکنده شده است. نوار رنگینی را که از مولفه های نور تشکیل می شود، طیف می نامند.

نیوتن نظر داد که نور از ذرات بسیار ریز – دانه ها – تشکیل می شود که با سرعت زیاد حرکت می کند. علاوه بر آن به نظر نیوتن نور در محیط غلیظ باسرعت بیشتری حرکت می کند. اگر نظر نیوتن در مورد سرعت نور درست می بود می بایست سرعت نور در شیشه بیشتر از هوا باشد که می دانیم درست نیست.

هویگنس در سال ۱۶۹۰ رساله ای در شرح نظریه موجی نور منتشر کرد. طبق اصل هویگنس حرکت نور به صورت موجی است و از چشمه های نوری به تمام جهات پخش می شود. هویگنس با به کاربردن امواج اصلی و موجک های ثانوی قوانین بازتاب و شکست را تشریح کرد. هویگنس نظر داد که سرعت نور در محیط های شکست دهنده کمتر از سرعت نور در هوا است که درست است.

پیروزی نظریه موجی نور

نظریه دانه ای نیوتن هرچند بعضی از سئوالات را پاسخ می گفت، اما باز هم پرسش هایی وجود داشت که این نظریه نمی توانست برای آنها جواب قانع کننده ای ارائه دهد. مثلاً چرا ذرات نور سبز از ذرات نور زرد بیشتر منحرف می شوند؟ چرا دو دسته اشعه ی نور می توانند بدون آنکه بر هم اثر بگذارند، از هم بگذرند؟

اما بر اساس نظریه موجی هویگنس، دو دسته اشعه ی نورانی می توانند بدون آنکه مزاحمتی برای هم فراهم کنند از یکدیگر بگرند. هویگنس نمی دانست که نور موج عرضی است یا موچ طولی، و طول موج های نور مرئی را نیز نمی دانست. ولی چون نور در خلاء نیز منتشر می شود، وی مجبور شد محیط یا رسانه حاملی برای این انتشار این امواج در نظر بگیرد. هویگنس تصور می کرد که این امواج توسط اتر منتقل می شوند. به نظر وی اتر محیط و مایع خیلی سبکی است و همه جا، حتی میان ذرات ماده نیز وجود دارد.

نظری هویگنس نیز بطور کامل رضایت بخش نبود، زیرا نمی توانست توضیح دهد که چرا سایه ی واضح تشکیل می شود، یا چرا امواج نور نمی توانند مانند امواج صوت از موانع بگذرند؟

نظریه موجی و دانه ای نور بیش از یکصد سال با هم مجادله کردند، اما نظریه دانه ای نیوتن بیشتر مورد قبول واقع شده بود، زیرا از یکطرف منطقی تر به نظر می رسید و از طرف دیگر با نام نیوتن همراه بود. با وجود این هر دو نظریه فاقد شواهد پشتوانه ای قوی بودند. تا آنکه بتدریج دلایلی بر موجی بودن نور ارائه گردید



ادامه مطلب

دانلود تحقیق کامل درباره نور آینه عدسی ۲۱ص

دانلود تحقیق کامل درباره نور آینه عدسی ۲۱ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۲۱

 

نور

ماهیت ذر‌ه‌ای

اسحاق نیوتن (Isaac Newton) در کتاب خود در رساله‌ای درباره نور نوشت پرتوهای نور ذرات کوچکی هستند که از یک جسم نورانی نشر می‌شوند. احتمالاً اسحاق نیوتن نور را به این دلیل بصورت ذره در نظر گرفت که در محیطهای همگن به نظر می‌رسد در امتداد خط مستقیم منتشر می‌شوند که این امر را قانون می‌نامند و یکی از مثالهای خوب برای توضیح آن بوجود آمدن سایه است.

ماهیت موجی

همزمان با نیوتن، کریسیتان هویگنس (Christiaan Huygens) (1695-1629) طرفدار توضیح دیگری بود که در آن حرکت نور به صورت موجی است و از چشمه‌های نوری به تمام جهات پخش می‌شود به خاطر داشته باشید که هویگنس با بکار بردن امواج اصلی و موجکهای ثانوی قوانین بازتاب و شکست را تشریح کرد. حقایق دیگری که با تصور موجی بودن نور توجیه می‌شوند پدیده‌های تداخلی هستند مانند به وجود آمدن فریزهای روشن و تاریک در اثر بازتاب نور از لایه‌های نازک و یا پراش نور در اطراف مانع.

ماهیت الکترومغناطیس

بیشتر به خاطر نبوغ جیمز کلارک ماکسول (James Clerk Maxwell) (1879-1831) است که ما امروزه می‌دانیم نور نوعی انرژی الکترومغناطیسی است که معمولاً به عنوان امواج الکترومغناطیسی توصیف می‌شود. گسترده کامل امواج الکترومغناطیسی شامل: موج رادیویی ، تابش فرو سرخ ، نور مرئی از قرمز تا بنفش ، تابش فرابنفش ، اشعه ایکس و اشعه گاما می‌باشد.

 

ماهیت کوانتومی نور

طبق نظریه مکانیک کوانتومی نور، که در دو دهه اول قرن بیستم بوسیله پلانک و آلبرت انیشتین و بور برای اولین بار پیشنهاد شد، انرژی الکترومغناطیسی کوانتیده است، یعنی جذب یا نشر انرژی میدان الکترومغناطیسی به مقادیر گسسته‌ای به نام “فوتون” انجام می‌گیرد.

نظریه مکملی

نظریه جدید نور شامل اصولی از تعاریف نیوتون و هویگنس است. بنابراین گفته می‌شود که نور خاصیت دو گانه‌ای دارد، برخی از پدیده‌ها مثل تداخل و پراش خاصیت موجی آنرا نشان می‌دهد و برخی دیگر مانند پدیده فوتوالکتریک ، پدیده کامپتون و … با خاصیت ذره‌ای نور قابل توضیح هستند.

تعریف واقعی نور چیست؟

تعریف دقیقی برای نور نداریم، جسم شناخته شده یا مدل مشخص که شبیه آن باشد وجود ندارد. ولی لازم نیست فهم هر چیز بر شباهت مبتنی باشد. نظریه الکترومغناطیسی و نظریه کوانتومی باهم ایجاد یک نظریه نامتناقض و بدون ابهام می‌کنند که تمام پدیده‌های نوری را می‌کنند. نظریه ماکسول درباره انتشار نور و بحث می‌کند در حالی که نظریه کوانتومی برهمکنش نور و ماده یا جذب و نشر آن را شرح می‌دهد ازآمیختن این دو نظریه ، نظریه جامعی که کوانتوم الکترودینامیک نام دارد، شکل می‌گیرد. چون نظریه‌های الکترومغناطیسی و کوانتومی علاوه بر پدیده‌های مربوط به تابش بسیاری از پدیده‌های دیگر را نیز تشریح می‌کنند منصفانه می‌توان فرض کرد که مشاهدات تجربی امروز را لااقل در قالب ریاضی جوابگو است. طبیعت نور کاملا شناخته شده است، اما باز هم این پرسش هست که واقعیت نور چیست؟

گسترده طول موجی نور

نور گستره طول موجی وسیعی دارد چون با نور مرئی کار می‌کنیم اغلب تصاویر و محاسبات در این ناحیه از گستره الکترومغناطیسی انجام می‌گیرد اما روشهای مورد بحث می‌تواند در تمام ناحیه الکترومغناطیسی مورد استفاده قرار گیرند. ناحیه نور مرئی بر حسب طول موج از حدود ۴۰۰ نانومتر (آبی) تا ۷۰۰ نانومتر (قرمز) گسترده است که در وسط آن طول موج ۵۵۵ نانومتر (نور زرد) که چشم انسان بیشترین حساسیت را نسبت به آن دارد یک ناحیه پیوسته که ناحیه مرئی را در بر می‌گیرد و تا فرو سرخ دور گسترش می‌یابد.

خواص نور و نحوه تولید

سرعت نور در محیطهای مختلف متفاوت است که بیشترین آن در خلاء و یا بطور تقریبی در هوا است، در داخل ماده به پارامترهای متفاوتی بر حسب حالت و خواص الکترومغناطیسی ماده وابسته است. بوسیله کاواک جسم سیاه می‌توان تمام ناحیه طول موجی نور را تولید نمود. در طبیعت در طول موجهای مختلف مشاهده شده اما مشهورترین آن نور سفید است که یک نور مرکبی از سایر طول موجها می‌باشد. تک طول موجها آنرا بوسیله لامپهای تخلیه الکتریکی که معرف طیفهای اتمی موادی هستند که داخلشان تعبیه شده می‌توان تولید کرد.

سرعت نور

مقدار سرعت نور:

نور بیشترین سرعت خود رادر خلا دارد که حدودا۳۰۰۰۰۰ کیلومتر بر ثانیه می باشد مقدار سرعت نور در محیط مادی غیر خلا کمتر ازمقدارش در خلا است.

با حل معادلات ماکسول و رسیدن به معادله بنیادی موج مقدار سرعت نور بر حسب گذردهی الکتریکی خلا وتراوایی مغناطیسی خلا بر طبق زابطه سرعت امواج الکترومغناطیسی ماکسول داده می شود.



ادامه مطلب

دانلود تحقیق کامل درباره نقش فیزیک در پزشکی

دانلود تحقیق کامل درباره نقش فیزیک در پزشکی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۱۱

 

نقش فیزیک در پزشکی

پزشکان براى تشخیص بیمارى ها از انواع وسایل ساده مانند دماسنج و فشارسنج، گوشى طبى (استتوسکوپ) تا دستگاه هاى بسیار پیچیده مانند میکروسکوپ الکترونى، لیزر و هولوگراف که همه براساس قانون هاى فیزیک طراحى و ساخته شده استفاده مى کنند. در این قسمت به ساختمان و طرز کار برخى از آنها مى پردازیم.

رادیوگرافى و رادیوسکوپى

رادیوگرافى عکسبردارى از بدن با پرتوهاى ایکس و رادیوسکوپى مشاهده مستقیم بدن با آن پرتوها است. در عکاسى معمولى از نورى که از چیزها بازتابش مى شود و بر فیلم عکاسى اثر مى کند استفاده مى شوند در صورتى که در رادیوگرافى پرتوهایى را که از بدن مى گذرند به کار مى برند.

پرتوهاى ایکس را نخستین بار در سال ۱۸۹۵ میلادى، ویلهلم کنراد رنتیگن استاد فیزیک دانشگاه ورتسبورگ آلمان کشف کرد. این کشف بسیار شگفت انگیز بود و خبر آن با سرعت در روزنامه هاى جهان منتشر شد. جالب است که رنتیگن بر روى پرتوهاى کاتدى کار مى کرد و به طور اتفاقى متوجه شد که وقتى این پرتوها، که همان الکترون هاى سریع هستند به مواد سخت و فلزات سنگین برخورد مى کنند پرتوهاى ناشناخته اى تولید مى شود او این پرتوها را پرتو ایکس به معنى مجهول نامید.

پرتوهاى ایکس قدرت نفوذ و عبور بسیار زیاد دارند. به آسانى از کاغذ، مقوا، چوب، گوشت و حتى فلزهاى سبک مانند آلومینیوم مى گذرند، لیکن فلزهاى سنگین مانند سرب مانع عبور آنها مى شود. اشعه ایکس از استخوان هاى بدن که از مواد سنگین تشکیل شده اند عبور نمى کنند در صورتى که از گوشت بدن به آسانى مى گذرند. همین خاصیت سبب شده که آن را براى عکسبردارى از استخوان هاى بدن به کار برند و محل شکستگى استخوان ها را مشخص کنند. براى عکسبردارى از روده و معده هم از پرتوهاى ایکس استفاده مى شود لیکن براى این کار ابتدا به شخص مایعاتى مانند سولفات باریم مى خورانند تا پوشش کدرى اطراف روده و معده را بپوشاند و سپس رادیوگرافى صورت مى دهند. کشف پرتوهاى ایکس که به وسیله رنتیگن عملى شد سرآغاز فعالیت هاى دانشمندانى مانند تامسون، بور، رادرفورد، مارى کورى، پیرکورى، بارکلا و بسیارى دیگر شد به طورى که نه فقط چگونگى تولید، تابش و اثرهاى پرتو ایکس و گاما و نور شناخته شد بلکه خود اشعه ایکس یکى از ابزارهاى شناخت درون ماده شد و انسان را با جهان بى نهایت کوچک ها آشنا کرد و انرژى عظیم اتمى را در اختیار بشر قرار داد. پرتوهاى ایکس در پزشکى و بهداشت براى پیشگیرى، تشخیص و درمان به کار مى رود به طورى که در فناورى هاى مربوطه یکى از ابزارهاى اساسى است.

سونوگرافىسونوگرافى عکسبردارى با امواج فراصوت است. فراصوت امواج مکانیکى مانند صوت ۲ است که بسامد آن بیش از ۲۰ هزار هرتز است. این امواج را مى توان با استفاده از نوسانگر پتروالکتریک یا نوسانگر مغناطیسى تولید کرد.

خاصیت پیزوالکتریک عبارت است از ایجاد اختلاف پتانسیل الکتریکى در دو طرف یک بلور هنگامى که آن بلور تحت فشار یا کشش قرار گیرد و نیز انبساط و انقباض آن بلور هنگامى که تحت تاثیر یک میدان الکتریکى واقع شود. بنابراین هرگاه از یک بلور کوارتز تیغه متوازى السطوحى عمود بر یکى از محورهاى بلور تهیه کنیم و این تیغه را میان دو صفحه نازک فولادى قرار دهیم و آن دو صفحه را به اختلاف پتانسیل متناوبى وصل کنیم، تیغه کوارتز با همان بسامد جریان منبسط و منقبض مى شود و به ارتعاش درمى آید و در نتیجه امواج فراصوت تولید مى کند. پدیده پیزوالکتریک در سال ۱۸۸۰ به وسیله پیرکورى کشف شد و از آن علاوه بر تولید امواج فراصوتى، در میکروفن هاى کریستالى و فندک استفاده مى شود. امواج فراصوتى داراى انرژى بسیار زیاد است و مى تواند سبب بالا رفتن دماى بافت هاى بدن انسان، سوختگى و تخریب سلول ها شود. از این امواج در دریانوردى، صنعت و پزشکى استفاده مى شود.

در پزشکى براى تشخیص، درمان و تحقیقات این امواج را به کار مى برند. دستگاهى که براى عکسبردارى به کار مى رود اکوسکوپ۳ یا سونوسکوپ۴ است. اساس کار عکسبردارى با امواج فراصوت بازتابش امواج است در این عمل دستگاه گیرنده و فرستنده موجود است و از بسامدهاى میان یک میلیون تا پانزده میلیون هرتز استفاده مى کنند. دستگاه مولد ضربه هاى موجى در زمان هاى بسیار کوتاه یک تا پنج میلیونیم ثانیه را در حدود ۲۰۰ ضربه در ثانیه مى فرستد و این ضربه ها در بدن نفوذ مى کند و چنانچه به محیطى برخورد کند که غلظت آن با محیط قبلى متفاوت باشد پدیده بازتابش روى مى دهد و با توجه به غلظت نسبى دو محیط مقدارى از انرژى ضربه هاى فراصوت بازتابش مى شود. دستگاه گیرنده این امواج را دریافت مى کند و به کمک دستگاه الکترونى و یک اسیلوسکوپ آن را به نقطه یا نقاط نورانى به تصویر تبدیل مى کند. عکسبردارى با فراصوت را براى تشخیص بیمارى هاى قلب، چشم، اعصاب، پستان، کبد و لگن انجام مى دهند.



ادامه مطلب

دانلود تحقیق کامل درباره نسبیت و کوانتوم

دانلود تحقیق کامل درباره نسبیت و کوانتوم

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۵۹

 

چگونه نسبیت و کوانتوم سازگار می شوند؟

مقدمه

از اوائل قرن بیستم دو نظریه ی بزرگ نسبیت و مکانیک کوانتوم، برای پاسخگویی به مشکلاتی که فیزیک کلاسیک با آنها دست بگریبان بود، پا به عرصه وجود نهادند. جالب این است که هر دو نظریه تقریباً همزمان مطرح شدند و سیر تکاملی خود را طی کردند. نخست نسبیت خاص در سال ۱۹۰۵ تنها در محدوده ی دستگاه های لخت بکار گرفته شد و در سال ۱۹۱۵ تحت عنوان نسبیت عام به دستگاه های شتابدار تسری یافت. مکانیک کوانتوم قدیم در سال ۱۹۰۰ با طرح کوانتومی بودن انرژی اظهار شد و در دهه ی ۱۹۲۰ سیر تکاملی خود را پیمود

همواره این سئوال مطرح بود که آیا این دو نظریه بزرگ را می توان با یکدیگر ترکیب کرد؟

دیراک توانست نسبیت خاص و مکانیک کوانتوم را بصورت مکانیک کوانتوم نسبیتی با هم ادغام کند. به دنبال آن سئوال این بود که چگونه می توان مکانیک کوانتوم و نسبیت عام را با هم ترکیب کرد؟

نظریه نسبیت عام اینشتین نظریه‌ای در باره جرم‌های آسمانی بزرگ مثل ستارگان، سیارات و کهکشان‌هاست که برای توضیح گرانش در این سطوح بسیار خوب است

مکانیک کوانتومی نظریه‌ای است که نیروهای طبیعت را مانند پیام‌هایی می‌داند که بین فرمیون‌ها (ذرات ماده) رد و بدل می‌شوند. مکانیک کوانتومی در توضیح اشیاء، در سطوح بسیار ریز خیلی موفق بوده بوده است

هاوکینگ می گوید ” یک راه برای ترکیب این دو نظریه بزرگ قرن بیستم در یک نظریه واحد آن است که گرانش را همانطور که در مورد نیروهای دیگر با موفقیت به آن عمل می‌کنیم، مانند پیام ذرات در نظر بگیریم. یک راه دیگر بازنگری نظریه نسبیت عام اینشتین در پرتو نظریه عدم قطعیت است

با آنکه نسبیت و مکانیک کوانوتم هر دو با در توجیه پدیده های حوزه ی خود، از توانایی خوبی برخوردارند، اما تسری برخی مفاهیم از مکانیک کلاسیک به فیزیک مدرن مانع از ترکیب این دو نظریه بزرگ هستند. بهمین دلیل نظریه سی. پی. اچ. تصریح می کند که مکانیک کلاسیک، مکانیک کوانتوم و نسبیت را بایستی تواما و همزمان مورد بررسی مجدد قرار داد. علاوه بر آن چنین بررسی مجددی تا زمانیکه نظریه هیگز نیز مورد توجه قرار نگیرد راه به جایی نخواهد برد. بهمین دلیل باید از مشکلات مکانیک کلاسیک شروع کنیم و ببینیم که آیا این مشکلات در نسبیت و مکانیک کوانتوم بر طرف شده یا نه؟

مشکلات قوانین نیوتن

هنگامیکه نیوتن قوانین حرکت و قانون جهانی جاذبه را ارائه کرد، این قوانین از نظر منطقی با اشکالات جدی همراه بود. قانون دوم نیوتن تا سرعتهای نامتناهی را پیشگویی می کرد که با تجربه سازگار نیست. قانون دوم به صورت

F=ma

ارائه شده است که طبق آن نیروی وارد شده به جسم می تواند تا بی نهایت سرعت آن افزایش دهد. این امر با مشاهدات تجربی قابل تطبیق نیست. مشکل بعدی کنش از راه دور بود. یعنی اثر نیروی جاذبه با سرعت نامتناهی منتقل می شد. تاثیر از راه دور همواره مورد انتقاد قرار قرار داشت.

اما مهمترین مشکل قوانین نیوتن در قانون جهانی جاذبه وی بود و خود نیوتن نیز متوجه آن شده بود.

نیوتن دریافت که بر اثر قانون جاذبه او، ستارکان باید یکدیگر را جذب کنند و بنابراین اصلاً به نظر نمی رسد که ساکن باشند. نیوتن در سال ۱۶۹۲ طی نامه ای به ریچارد بنتلی نوشت “که اکر تعداد ستارگان جهان بینهایت نباشد، و این ستارگان در ناحیه ای از فضا پراکنده باشند، همگی به یکدیگر برخورد خواهند کرد. اما اکر تعداد نامحدودی ستاره در فضای بیکران به طور کمابش یکسان پراکنده باشند، نقطه مرکزی در کار نخواهد بود تا همه بسوی آن کشیده شوند و بنابراین جهان در هم نخواهد ریخت.”

این برداشت نیز با یک اشکال اساسی مواجه شد. بنظر سیلیجر طبق نظریه نیوتن تعداد خطوط نیرو که از بینهایت آمده و به یک جسم می رسد با جرم آن جسم متناسب است. حال اکر جهان نامتناهی باشد و همه ی اجسام با جسم مزبور در کنش متقابل باشند، شدت جاذبه وارد بر آن بینهایت خواهد شد.

مشکل بعدی قانون جاذبه نیوتن این است که طبق این قانون یک جسم به طور نامحدود می تواند سایر اجسام را جذب کرده و رشد کند، یعنی جرم یک جسم می تواند تا بینهایت افزایش یابد. این نیز با تجربه تطبیق نمی کند، زیرا وجود جسمی با جرم بینهایت مشاهده نشده است.

مشکل بعدی قوانین نیوتن در مورد دستکاه مرجع مطلق بود. همچنان که می دانیم حرکت یک جسم نسبی است، وقتی سخن از جسم در حال حرکت است، نخست باید دید نسبت به چه جسمی یا در واقع در کدام چارچوب در حرکت است. دستگاه های مقایسه ای در فیزیک دارای اهمیت بسیاری هستند. قوانین نیوتن نسبت به دستگاه مطلق مطرح شده بود. یعنی در جهان یک چارچوب مرجع مطلق وجود داشت که حرکت همه اجسام نسبت به آن قابل سنجش بود. در واقع همه ی اجسام در این چارچوب مطلق که آن را “اتر” می نامیدند در حرکت بودند. یعنی ناظر می توانست از حرکت نسبی دو جسم سخن صحبت کند یا می توانست حرکت مطلق آن را مورد توجه قرار دهد.

براین اساس مایکلسون تصمیم داشت سرعت زمین را نسبت به دستگاه مطلق “اتر” به دست آورد. مایکلسون یک دستگاه تداخل سنج اختراع کرد و در سال ۱۸۸۰ تلاش کرد طی یک آزمایش سرعت مطلق زمین را نسبت به دستگاه مطلق “اتر” به دست آورد. نتیجه آزمایش منفی بود. (برای بحث کامل در این مورد به کتابهای فیزیک بنیادی مراجعه کنید.) با آنکه آزمایش بارها و بارها تکرار شد، اما نتیجه منفی بود. هرچند مایکلسون از این آزمایش نتیجه ی مورد نظرش به دست نیاورد، اما به خاطر اختراع دستگاه تداخل سنج خود، بعدها برنده جایزه نوبل شد.

نسبیت خاص

برای توجیه علت شکست آزمایش مایکلسون نظریه های بسیاری ارائه شد تا سرانجام اینشتین در سال ۱۹۰۵ نسبیت خاص را مطرح کرد. نسبیت خاص شامل دو اصل زیر است:



ادامه مطلب

دانلود تحقیق کامل درباره نسبیت عام

دانلود تحقیق کامل درباره نسبیت عام

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۸

 

نسبیت عام

مقدمه

در دهه اول قرن بیستم انقلابی در فلسفه علوم طبیعی پیش آمد که بسیاری آن را از حیث عمق معنا و درهم ریزی احکام موجود پذیرفته شده ، نسبت به انقلاب کوپرنیکی – گالیله‌ای ، برتر به شمار می‌آورند. در این فاصله زمانی دو نظریه بسیار مهمی پا به عرصه رقابت نهادند ، نظریه نسبیت و کوانتمی که نسبت به کارهای دانشمندان پیشین از جمله ماکسول ، سارین ، کلوین و کلاوزیوس به نحو چشمگیری متفاوت بودند. این نظریه‌های جدید با مکانیک نیوتونی نیز در بعضی از اصول و فرضهای بنیادی اختلاف شدیدی داشتند.این نظریه علاوه بر اینکه در برگیرنده پیچیدگیهای ریاضی است، تصور ذهنی و فهم آن ، بسیار دشوار است. البته شایان ذکر است که انیشتین در مقاله ۱۹۰۵ خود که برای اولین بار به نسبیت خاص خود پرداخت، از معادلات ریاضی ساده استفاده کرد. اما در مقاله ۱۹۱۹ که به نسبیت عام پرداخت ، بر خلاف مقاله پیشین از فرمولهای پیجیده ریاضی استفاده کرد. نسبیت از ریشه نسبی گرفته شده است ، یعنی هر کدام از واحدهای فیزیکی شناخته شده برای توصیف پدیده‌های طبیعی ، نسبی هستند. به عبارت دیگر می‌توان گفت که بر اساس نسبیت ، جرم ، سرعت ، شتاب و حتی زمان که برای ما تعریف می‌شوند، نسبی هستند.

 

آسانسور انیشتین ، تأثیر آسانسور در حالشتاب بر بدن انسان برابر با جاذبه است.

نظریه نسبیت

نسبیت عام برای حرکتهایی ساخته شده که در خلال حرکت سرعت تغییر می کند یا به اصطلاح حرکت شتابدار دارند. شتاب گرانش زمین g که همان عدد ۹٫۸۱m/s است نیز یک نوع شتاب است. پس نسبیت عام با شتابها کار دارد نه با حرکت. نظریه‌ای است راجع به اجرامی که شتاب ثقل دارند. کلا هر جا در عالم ، جرمی در فضای خالی باشد حتما یک شتاب جاذبه در اطراف خود دارد که مقدار عددی آن وابسته به جرم آن جسم می‌باشد. پس در اطراف هر جسمی شتابی وجود دارد.نسبیت عام با این شتابها سر و کار دارد و بیان می‌کند که هر جسمی که از سطح یک سیاره دور شود زمان برای او کندتر می‌شود. یعنی مثلا ، اگر دوربینی روی ساعت من بگذارند و از عقربه‌های ساعتم فیلم زنده بگیرند و روی ساعت آدمی که دارد بالا میرود و از سیاره زمین جدا می‌شود هم دوربینی بگذارند و هر دو فیلم را کنار هم روی یک صفحه تلویزیونی پخش کنند، ملاحظه خواهیم کرد که ساعت من تندتر کار می‌کند. نسبیت عام نتایج بسیار عجیب و قابل اثبات در آزمایشگاهی دارد. مثلا نوری که به اطراف ستاره‌ای سنگین می‌رسد کمی به سمت آن ستاره خم می‌شود. سیاهچاله‌ها هم بر اساس همین خاصیت است که کار می‌کنند. جرم آنها به قدری زیاد و حجمشان به قدری کم است که نور وقتی از کنار آنها می‌گذرد به داخل آنها می‌افتد و هرگز بیرون نمی‌آید.همه ما برای یکبار هم که شده گذرمان به ساعت ‌فروشی افتاده است و ساعتهای بزرگ و کوچک را دیده ایم که روی ساعت ده و ده دقیقه قرار دارند. ولی هیچگاه از خودمان نپرسیده‌ایم چرا؟ آلبرت انیشتین در نظریه نسبیت خاص با حرکت شتابدار و یا با گرانش کاری نداشت. اینیشتین در سال ۱۹۱۹ ، با ترمیم و تعمیم نسبیت خود ، نسبیت عام را مطرح کرد. نسبیت عام برخلاف نسبیت خاص ، در بر گیرنده معادلات و پیچیدگیهای ریاضی بود. یکی از پیش بینیهای این نظریه آن بود که ساعتها در میدان گرانشی بسیار قوی ، کندتر کار می‌کنند و همچنین نور در میدان گرانشی بسیا قوی ، در مسیر مستقیم خود منحرف می‌شوند.این نظریه توانست به بسیاری از معماهای کیهان شناسی در مورد سیاهچاله ، عمر کرات و سیارات ، انرژی ستاره‌ها و کهکشانها ، چگالی جهان و … پاسخ دهد. به اعتقاد وی تأثیرات جاذبه و شتاب جدایی ناپذیر بوده و بنابراین باهم برابرند. او همچنین نحوه ارتباط نیروهای جاذبه به انحنای فضا _ زمان را تشریح نمود.

انحنای فضا _ زمان

انیشتن با استفاده از قوانین ریاضی نشان داد که چگونه هر جسمی ، به فضا _ زمان اطراف خود انحنا می‌بخشد. در مورد بعضی اجسام ، مثل ستارگان که جرم نسبتا زیادی دارند، این انحنا می‌تواند باعث تغییراتی در مسیر هر چیز که از کنار آن می‌گذرد شود، و نور نیز از این قاعده مستثنی نمی‌باشد. این نظریه با چارچوبهای نالخت سر و کار دارد و در کیهان شناسی و گرانش کاربرد دارد. فرض اساسی نسبیت عام این است که تمام دستگاههای مختصات که در حالتهای حرکت اختیاری هستند، برای بیان ریاضی قوانین فیزیک باید به یک اندازه مناسب باشند. بنابراین ، باید برای نوشتن قوانین فیزیک روشهایی یافت، بطوری که تحت هر تبدیل مختصات دلخواه ، تغییری در شکل آنها حاصل نشود.

نقش تساوی جرم گرانشی و جرم لختی

نقش تساوی جرم گرانشی و جرم لختی در پیشرفت نسبیت مساوی بودن جرم گرانشی و جرم لختی نقش اساسی در پیشرفت تاریخی نسبیت عام داشت. منشأ تساوی مزبور در این نکته است که قانون دوم نیوتن f = ma برای شتابهای گرانشی در میدان گرانشی با شدت g ، بصورت mGg = mAa در می‌آید. چون مشاهده می‌شد که در یک میدن گرانشی هر اشیاء به یک میزان شتاب می‌گیرند، یعنی g = a انیشتین به تحقیق دریافت که گرانش اساسا یک پدیده سینماتیکی است که شامل تغییر در مختصات فضا و زمان در همسایگی منبع میدان گرانشی است.



ادامه مطلب

دانلود تحقیق کامل درباره نانو تکنولوژی ۳۳ ص

دانلود تحقیق کامل درباره نانو تکنولوژی ۳۳ ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۳۳

 

فهرست مطالب

عنوان صفحه

نانوتکنولوژی علم خواص عجیب مواد ۱

آغاز نانوتکنولوژی ۴

نانوتکنولوگی در صنایع نیمه هادی ۶

نانو فیزیک ۹

سیر تکاملی و رشد ۹

مشخصه یابی لایه نازک قطعات الکترونیکی ۱۱

ساخت و مشخصه یابی سیستم های چند لایه ای ۱۲

وصعت فناوری نانو الکترونیک ۱۲

اهداف فناوری نانو ۱۳

شاخه های فناوری نانو ۱۸

کاربرد نانو تکنولوژی در پزشکی ۲۵

منابع ۳۳

نانو تکنولوژی علم خواص عجیب مواد

از نانوتکنولوژی، بیوتکنولوژی و فناوری اطلاع رسانی به عنوان سه قلمرو علمی نام می برند که انقلاب سوم صنعتی را شکل می دهد. از همین روست که کشورهای در حال توسعه که اغلب از دو انقلاب قبل جا مانده اند، می کوشند با سرمایه گذاری در این سه قلمرو، عقب ماندگی خود را جبران کنند. همان گونه که در این گزارش می خوانید، نانوتکنولوژی کاربردهای گسترده ای در تمام حیطه های زندگی دارد و از این رو توسعه آن می تواند به بهبود و تسهیل زندگی کمک فراوان کند.

اتم سنگ بنای بنیادی ماده است و در نتیجه اتم ها بسیار کوچک هستند. توصیف و تصور جهان در سطح اتم و ملکول دشوار است. این حیطه از علم به قدری عجیب است که بخشی خاص از فیزیک به آن اختصاص یافته شده که مکانیک کوانتم نام دارد. هدف این علم برای توصیف رخدادها در سطح اتم است.اگر قرار بود توپ تنیس را به طرف دیوار پرتاب کنید و توپ از آن بگذرد و به سوی دیگر دیوار برود، حتماً تعجب می کردید. اما این دقیقاً همان اتفاقی است که در مقیاس کوانتم رخ می دهد. در مقیاس بسیار کوچک، خواص ماده مانند رنگ، مغناطیس و توانایی انتقال برق نیز به شکل غیرمنتظره تغییر می کند. دیدن جهان اتم به معنای عادی کلمه میسر نیست، چون خواص آن کوچکتر از طول موج نور قابل دیدن است. اما در سال ۱۹۸۱ پژوهشگران شرکت آی بی ام نوعی میکروسکوپ ساختند که نام آن STM بود. اسم این میکروسکوپ در واقع از یک خاصیت در مکانیک کوانتم گرفته شده بود که در میکروسکوپ یاد شده به کار می رود. این دستگاه می توانست پستی و بلندی های در مقایس جهان نانو را نشان دهد. میکروسکوپ STM این امکان را به دانشمندان داد که برای اولین بار اتم ها و ملکول ها را ببینند. تصاویر این میکروسکوپ به زیبایی و وضوح تصاویر طبیعت اما در مقیاس تصورناپذیر نانومتر بود.

یک نانومتر یک میلیاردیم متر یا حدوداً به طول ۱۰ اتم هیدروژن است. با وجودی که دانشمندان از سال های دهه ۱۹۵۰ درباره بررسی مواد در این مقیاس تلاش کرده بودند، آنان ناچار شدند تا اختراع میکروسکوپ STM صبر کنند تا به هدف خود برسند.

عموماً در این باره توافق وجود دارد که نانوتکنولوژی اشیاء بین یک تا ۱۰۰ نانومتر را در بر می گیرد، هر چند که این تعریف تا حدی قراردادی است. برخی افراد اجسامی به کوچکی یک دهم نانومتر را نیز در نظر می گیرند که به اندازه پیوند بین دو اتم کربن است. در دیگر سوی این گستره در اجسام بزرگتر از ۵۰ نانومتر قوانین فیزیک کلاسیک صدق می کند.

مواد بسیاری هستند که دارای خواص اجسام در مقیاس نانو هستند اما اسم نانوتکنولوژی به آنها اطلاق نمی شود. نانوتکنولوژی در پی آن است تا از خواص عجیب اجسام در مقیاس بسیار کوچک استفاده کند.

جورج اسمیت سرپرست بخش علم مواد در دانشگاه آکسفورد گفت در مقیاس نانو، خواص «جدید، هیجان انگیز و متفاوتی» یافت می شود. با کوچک تر شدن اجسام، نسبت بین فضای سطح و حجم آن افزایش می یابد. این امر بدان علت مهم است که اتم های موجود در سطح یک ماده معمولاً بیشتر از اتم های مرکز آن واکنش نشان می دهند. از



ادامه مطلب

تمام حقوق مادی , معنوی , مطالب و طرح قالب برای این سایت محفوظ است - طراحی شده توسط پارس تمز