فایل جدید


||||||||||||||
خانه » نتایج جستجو برای: تحقیق (صفحه ی 5)

نتایج جستجو برای: تحقیق

دانلود تحقیق کامل درباره نانو فناوری

دانلود تحقیق کامل درباره نانو فناوری

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۲۶

 

سابقه و هدف :

نانو فناوری یکی از جدید ترین علومی است که در سه شاخه مرطوب ، خشک و محاسبه ای اینده زندگی بشر را دگرگون خواهد ساخت . یکی از مهمترین زمینه های تاثیر گذاری نانو فناوری در زندگی انسان ، علم غذا است که به دلیل احتیاج روزمره و دائمی انسان به غذا هر گونه تغییر و تحو لی در ان نقش به سزایی در تغییر کیفیت زندگی انسان خواهد داشت . لذا به منظور تبیین جایگاه نانو فناوری و نانو علم در علوم غذا و صنایع این مقاله نوشته شده است .

مواد و روش :

پژوهش به صورت مروری و با استفاده از کلمات کلیدی نانوفناوری ، نانو علم ، علوم غذایی و صنایع غذا یی انجام شد . خلاصه و اصل مقالات در سایت های جستجو گر همچون ، Yahoo ، Google ، Med ، Pub ، Elsevir و نیز در کتب ، مجلات ، مقالات کنگر ه ها جستجو و پس از تکمیل با دیدی تحلیلی مورد بررسی قرار گرفتند .

یافته ها :

نانو فناوری و نانو علم از پتا نسیل قوی برای بهبود اقتصاد و استاندارد های زندگی بشر برخودار است و کاربرد ان در حوزه های مختلف از جمله ساخت مواد ، الکترونیک و رایانه ، پزشکی و بهداشت ، امنیت ملی و دفاعی ئ غیره روز به روز بیشتر می شود . مهمترین ابزار نانو فناوری ساخت نانو مواد است که در شاخه های مختلف علوم از جمله علوم ذا کاربرد دارند . از جمله کاربرد های نانو مواد در علوم غذا و صنایع غذایی ، می توان به بسته بندی ، تولید غذا های ملکو لی ، برچسب گذاری و پایش ، افزودنی های غذایی ، غذا های دارای انتشار مخصوص در بدن و روکش کردن انزیم ها اشاره نمود .

نتیجه گیری و توصیه ها :

بر اساس نظر غالب پژوهشگران نانو فناوری و نانو علم ، دستیابی به فناوری نانو یکی از پایه های تحیکم استقلال و امنیت ملی کشور ها است . جایگاه نانو فناوری در علوم غذا از دو جنبه سلامت غذا و تغذیه و نیز مبارزه با گرسنگی اشکار و پنهان قابل بررسی می باشد . با تو جه به ضرورت اشنایی دانشجویان و پژوهشگران رشته های و ابسته به علو م غذا ، تد ریس مبانی کاربردی نانو فناوری در دور ه های تحصیلات تکمیلی رشته های وابسته به علو م غذا همچون علوم صنایع غذا یی ، دامپزشکی و تغذیه توصیه می گردد.

مقدمه :

نانو فناوری توانا یی کار در سطح ملکو لی یا اتمی ، برای ایجاد ساختار های بزرگ و کاملا نو با سازماندهی ملکو لی است . تاکنون تعاریف متعدد ی بای نا نو فناوری ارایه شده است . در حالی که برنامه های پیشگامی ملی نانو تکنو لو ژی امریکا برای اینکه موضوعی را درسطح نانو فناوری بشناسد سه شرط قایل است :

۱ _ هر گونه تحقیق یا توسعه فناوری که در سطح اتمی ، ملکو لی یا ماکرو ملکولی و در مقیاس طولی تقریبی یک تا ۱۰۰ نانو متر انجام شود .

۲ _ ایجاد ویا استفاده از ساختارها، ابزار ها ودستگاه ه ها یی که دارای ویژگی ها و عملکرد ها ی جدید به دلیل اندازه کوچک یا متوسط خود باشند .

۳ _ توانا یی کنترل در سطح اتمی .

برای این که درک واقعی تری از نانو فناو ری پیدا کنیم ، ابتدا لازم است تعریفی از نانو متری داشته باشیم . نانو متر یک بیلینوم متر است . برای مقایسه می توان گفت که عرض (پهنای) موی سر انسان تقریبا ۸۰ هزار نانو متر می باشد . یک جسم در مقیاس نانو متری حتی از یاخته نیز کوچکتر است و فقط توسط ریزبین های اتمی خاص ، که امروزه در کشورهای پیشرفته تولید می شوند قابل مشاهده است .

به طور کلی مطالعات نانو فناوری را می توان به سه دسته تقسیم کرد . اگر چه روش های تحقیقاتی در انها با یکدیگر متفاوت است ، اما این سه شاخه کاملا با یکدیگر مرتبط است هستند و پیشرفت در یکی از شاخه ها ، مکن است بر شاخه های دیگر نیز موثر باشد . این شاخه ها عبارتند از :

۱ _ نانو فناوری مرطوب :

این شاخه به مطالعه ساختار های زند ه ای می پردازد ، که در محیط های ابی قرار دارند . در این شاخه از نانو فناوری ، ساختمان مواد ژنتیکی ، غشا ها و سایر ترکیبات یاخته ای در مقیاس نانوم تر مورد مطالعه قرار می گیرد . این شاخه در بر گیرنده علوم پزشکی ، دارو یی و به طور کلی علوم و روش های مرتبط با زیست فناوری است .

۲ _ نانو فناوری خشک:

این شاخه از نانو فناوری علوم پایه شیمی و فیزیک مشتق می شود و به مطالعه تشکیل ساختا رهای کربنی ، سیلیکونی ، مواد غیر الی و فلزی می پر دازد . در نانو فناوری خشک ، کاربردمواد نانو یی در الکترونیک ،مغناطیس و ابزا های نوری مورد مطالعه قرار می گیرد . برای مثال طراحی و ساخت ریزبین هایی که بتوان با استفاده از انها مواد را در ابعاد نانو متر دید در این شاخه قرار می گیرد .

۳ _ نانو فناوری محاسبه ای :

در بسیاری از مواقع ابزار های ازمایشگاهی موجود برای انجام برخی ازمایش ها و تحقیقات در مقیاس نانو مناسب نیستند و با این که انجام این گونه ازمایش ها بسیار گران تمام می شود . در این حالت از را یانه ها برای شبیه سازی فرایند ها و



ادامه مطلب

دانلود تحقیق کامل درباره نانو تکنولوژی علم خواص عجیب مواد

دانلود تحقیق کامل درباره نانو تکنولوژی علم خواص عجیب مواد

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۱۳

 

نانو تکنولوژی علم خواص عجیب مواد

از نانوتکنولوژی، بیوتکنولوژی و فناوری اطلاع رسانی به عنوان سه قلمرو علمی نام می برند که انقلاب سوم صنعتی را شکل می دهد. از همین روست که کشورهای در حال توسعه که اغلب از دو انقلاب قبل جا مانده اند، می کوشند با سرمایه گذاری در این سه قلمرو، عقب ماندگی خود را جبران کنند. همان گونه که در این گزارش می خوانید، نانوتکنولوژی کاربردهای گسترده ای در تمام حیطه های زندگی دارد و از این رو توسعه آن می تواند به بهبود و تسهیل زندگی کمک فراوان کند.

اتم سنگ بنای بنیادی ماده است و در نتیجه اتم ها بسیار کوچک هستند. توصیف و تصور جهان در سطح اتم و ملکول دشوار است. این حیطه از علم به قدری عجیب است که بخشی خاص از فیزیک به آن اختصاص یافته شده که مکانیک کوانتم نام دارد. هدف این علم برای توصیف رخدادها در سطح اتم است.اگر قرار بود توپ تنیس را به طرف دیوار پرتاب کنید و توپ از آن بگذرد و به سوی دیگر دیوار برود، حتماً تعجب می کردید. اما این دقیقاً همان اتفاقی است که در مقیاس کوانتم رخ می دهد. در مقیاس بسیار کوچک، خواص ماده مانند رنگ، مغناطیس و توانایی انتقال برق نیز به شکل غیرمنتظره تغییر می کند. دیدن جهان اتم به معنای عادی کلمه میسر نیست، چون خواص آن کوچکتر از طول موج نور قابل دیدن است. اما در سال ۱۹۸۱ پژوهشگران شرکت آی بی ام نوعی میکروسکوپ ساختند که نام آن STM بود. اسم این میکروسکوپ در واقع از یک خاصیت در مکانیک کوانتم گرفته شده بود که در میکروسکوپ یاد شده به کار می رود. این دستگاه می توانست پستی و بلندی های در مقایس جهان نانو را نشان دهد. میکروسکوپ STM این امکان را به دانشمندان داد که برای اولین بار اتم ها و ملکول ها را ببینند. تصاویر این میکروسکوپ به زیبایی و وضوح تصاویر طبیعت اما در مقیاس تصورناپذیر نانومتر بود.

یک نانومتر یک میلیاردیم متر یا حدوداً به طول ۱۰ اتم هیدروژن است. با وجودی که دانشمندان از سال های دهه ۱۹۵۰ درباره بررسی مواد در این مقیاس تلاش کرده بودند، آنان ناچار شدند تا اختراع میکروسکوپ STM صبر کنند تا به هدف خود برسند.

عموماً در این باره توافق وجود دارد که نانوتکنولوژی اشیاء بین یک تا ۱۰۰ نانومتر را در بر می گیرد، هر چند که این تعریف تا حدی قراردادی است. برخی افراد اجسامی به کوچکی یک دهم نانومتر را نیز در نظر می گیرند که به اندازه پیوند بین دو اتم کربن است. در دیگر سوی این گستره در اجسام بزرگتر از ۵۰ نانومتر قوانین فیزیک کلاسیک صدق می کند.

مواد بسیاری هستند که دارای خواص اجسام در مقیاس نانو هستند اما اسم نانوتکنولوژی به آنها اطلاق نمی شود. نانوتکنولوژی در پی آن است تا از خواص عجیب اجسام در مقیاس بسیار کوچک استفاده کند.

جورج اسمیت سرپرست بخش علم مواد در دانشگاه آکسفورد گفت در مقیاس نانو، خواص «جدید، هیجان انگیز و متفاوتی» یافت می شود. با کوچک تر شدن اجسام، نسبت بین فضای سطح و حجم آن افزایش می یابد. این امر بدان علت مهم است که اتم های موجود در سطح یک ماده معمولاً بیشتر از اتم های مرکز آن واکنش نشان می دهند. از این رو، اگر نقره به ذرات بسیار کوچک تبدیل شود، خواص ضدمیکروبی پیدا می کند که در حجم انبوه آن وجود ندارد. یک شرکت با تولید ذرات ریز از ترکیب اکسید سدیم از این خاصیت استفاده می کند و ماده ای تولید می کند که خاصیت کاتالیزوری آن بیشتر است.

در این جهان نادیدنی، ذرات کوچک طلا در دمای چند صد درجه پایین تر ذوب می شود و مس که معمولاً رسانای خوب الکتریسیته است، ممکن است در لایه های نازک و در مجاورت میدان مغناطیسی مقاوم شود.

الکترون ها (مانند همان توپ تنیس خیالی) می توانند از نقطه ای به نقطه دیگر بجهند و ملکول ها می توانند همدیگر را از مسافت های متوسط جذب کنند. این خاصیت به برخی حشرات اجازه می دهد روی سقف راه بروند، چون موهای ریز کف پایشان به سقف می چسبد.

اما یافتن خواص جدید در مقیاس نانو گام نخست است. گام بعدی استفاده از این دانش است. توانایی ساخت اجسام با دقت اتمی این امکان را به دانشمندان می دهد که موادی با خواص بهتر یا جدید نوری، مغناطیسی، حرارتی یا الکتریک تولید کنند.

اکنون انواع جدیدی از ماده تولید می شود. مثلاً شرکت نانوسونیک در ویرجینیا لاستیک فلزی تولید کرده است. این ماده مانند لاستیک انعطاف و انحنا می پذیرد اما الکتریسیته را مانند فلزی محکم منتقل می کند. مرکز تحقیقاتی جنرال الکتریک در پی ساخت سرامیک انعطاف پذیر است. در صورت موفقیت، از این ماده می توان در ساخت قطعات موتور جت استفاده کرد و موتورهایی ساخت که در دمای بیشتر با کارایی بهتری کار کند. چندین شرکت مشغول کار روی موادی هستند که روزی به صورت رنگ به سلول های خورشیدی بدل خواهد شد.

از آنجایی که نانوتکنولوژی کاربردهای گسترده ای دارد، بسیاری از افراد فکر می کنند این علم اهمیتی به مانند برق یا پلاستیک پیدا کند. مطالعات نشان می دهد نانو تکنولوژی با بهبود مواد و محصولات و تولید مواد کاملاً جدید بر تمام صنایع تأثیر خواهد گذاشت. افزون براین، فعالیت در حد کوچکترین مقیاس ها به پیشرفت های مهم در عرصه هایی مانند الکترونیک، انرژی و پزشکی زیستی خواهد انجامید.

آغاز نانوتکنولوژی

نانو تکنولوژی از یک رشته علمی خاص مشتق نمی شود. با وجودی که نانو تکنولوژی بیشترین وجه مشترک را با علم مواد دارد، خواص اتم و ملکول شالوده بسیاری از علوم است و در نتیجه دانشمندان حوزه های علمی به آن جذب می شوند. برآورد می شود در سراسر جهان حدود ۰۰۰/۲۰ نفر در نانو تکنولوژی کار می کنند. تحقیقات در مقیاس بسیار ریز در رشته های الکترونیک، نوروبیوتکنولوژی به ترتیب نانوالکترونیک، نانو اپتیکس و نانو بیوتکنولوژی نیز نامیده می شود.

پیشوند نانو از کلمه یونانی به معنای کوتوله مشتق می شود. براساس برآورد شرکت لاکس ریسرچ در نیوریورک، بودجه کل تحقیق و توسعه نانو تکنولوژی دولت ها و شرکت ها در سراسر جهان در سال ۲۰۰۴ بیش از ۶/۸میلیارد دلار بود. نیمی از این



ادامه مطلب

دانلود تحقیق کامل درباره مولاریته

دانلود تحقیق کامل درباره مولاریته

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۵

 

مولاریته

نگاه کلی

مولاریته یا غلظت مولار که با (M) نشان داده می‌شود، عبارت است از تعداد وزن مولکول گرم (یا تعداد مول) از یک جسم حل شده در یک لیتر محلول. مول کمیت اساسی است که یک شیمیدان تجزیه با آن سر و کار زیادی دارند. یک مول برابر با ۶٫۰۲۳X1023 مولکول از یک جسم است. اصطلاح مول در یک مفهوم وسیع برای توصیف مقادیر ترکیبات مولکولی ، عناصر آزاد و یونها بکار می‌رود. به بیان دیگر وزن تعداد ۶٫۰۲۳X1023 عدد مولکول ، یون یا عنصر برابر با ۱ مول مولکول ، یون یا عنصر است که به صورت مولکول گرم ، یون گرم یا عنصر گرم نامیده می‌شود.

تهیه محلولهای مولار

برای تهیه یک محلول مولار از یک ترکیب باید یک مول از آن را وزن کرده و به مقدار کافی به آن آب اضافه کنیم تا دقیقا یک لیتر محلول بدست آید. به عنوان مثال برای تهیه یک محلول ۲M از اسید سولفوریک باید گرم ۱۹۶٫۱۶=۹۸٫۰۸×۲ از اسید سولفوریک را در مقدار کافی آب حل کنیم تا یک لیتر محلول ۲M اسید سولفوریک بدست آید. وقتی یک محلول مایع تهیه می‌کنیم، حجم محلول به ندرت مساوی مجموع حجمهای اجزا خالص سازنده آن است. معمولا حجم نهایی محلول بیشتر یا کمتر از مجموع حجمهای اجزا سازنده آن است.

از این رو برای تهیه یک محلول معین عملا نمی‌توانیم مقدار حلال لازم را پیش‌بینی کنیم. برای تهیه محلولهای مولار و سایر محلولهایی که بر اساس حجم کل است، معمولا از بالنهای حجم‌سنجی استفاده می‌شود. در این صورت برای تهیه یک محلول مقدار دقیق ماده حل شونده را در بالن جای می‌هیم و با دقت آن قدر آب می‌افزائیم و بطور مداوم و با احتیاط هم می‌زنیم تا سطح محلول به خط نشانه‌ای که روی گردن بالن مشخص شده برسد.

محاسبه غلظت یک محلول بر حسب مولاریته

برای محاسبه غلظت یک محلول بر حسب مولاریته ابتدا باید تعداد مولهای جسم حل شده را بدست آوریم. تعداد مولهای جسم حل شده از تقسیم کردن وزن آن (برحسب گرم) به وزن فرمولی بدست می‌آید.

اگر ماده حل شده به صورت مولکولی باشد، در آن صورت تعداد مول از فرمول وزن مولکولی/گرمهای ماده حل شده=تعداد مولها (مولکول حل شده) محاسبه می‌شود.

اگر بخواهیم تعداد مولهای یک یون را محاسبه کنیم، باید بجای وزن مولکولی وزن یون مربوطه را در فرمول قرار دهیم. یعنی وزن یونی/گرمهای ماده حل شده=تعداد مول‌ها (یون حل شده).

اگر ماده حل شده به صورت اتمی باشد، مثلا نقره فلزی در آن صورت تعداد مولها از فرمول وزن اتمی/گرمهای ماده حل شده = تعداد مولها (اتم حل شده) بدست می‌آید. بعد از بدست آوردن تعداد مولهای ماده حل شده با قرار دادن آن در فرمول غلظت مولار ، مولاریته محلول بدست می‌آید. یعنی داریم

لیتر محلول/میلی مولهای ماده حل شده= M

یا

لیتر محلول/تعداد مول‌های حل شده=M

وقتی غلظت محلول بر حسب مولاریته بیان می‌شود، محاسبه مقدار ماده حل شده موجود در یک نمونه معین از محلول آسان است. به عنوان مثال یک لیتر محلول ۲ مولار دارای ۲ مول ماده حل شده است. ۵۰۰ml آن دارای یک مول ماده حل شده ، ۱۰۰ml آن دارای ۰٫۲ مول ماده حل شده است.

نکته مهم

تنها اشکال تعیین غلظتها بر اساس حجم محلول این است که چنین غلظتهایی با تغییر دما اندکی تغییر می‌کنند، زیرا تغییر دما موجب انقباض یا انبساط محلول می‌شود. بنابراین برای اینکه غلظت محلول تهیه شده دقیق‌تر باشد، باید محلول در دمایی که قرار است استفاده شود، تهیه شده و از بالن حجم ‌سنجی که در این دما مدرج شده است استفاده شود.

تهیه محلول وتعیین مولاریته آن

 

غلظت مولی یا مولاریته

بیشتر واکنشهای شیمیایی در محلولها و بخصوص محلولهای آبی صورت می گیرند. استوکیومتری واکنشها بر حسب مول تفسیر می شو. بنابر این در محاسبه های استوکیومتری محلولها از «غلظت مولی» استفاده می کنیم. غلظت مولی یا مولاریته عبارت است از تعداد مولهای حل شده از یک ماده در لیتر محلول.

برای تهیه محلولهای رقیق می توان از رقیق کردن محلولهای غلیظ تر استفاده کرد. طبق فرمول زیر :

n=M × V = M

× v

غلیظ غلیظ رقیق

رقیق

واکنش دهندی محدود کننده

در هنگام انجام واکنشهای شیمیایی معمولاً یکی از واکنش دهنده ها به مقدار کمتر از مقدار استوکیومتری وجود دارد. بنابراین در جریان واکنش زودتر از واکنش دهنده های دیگر به مصرف می رسد و تمامی می شود.

این ماده تعیین کننده پیشرفت واکنش است و آن را محدود کننده می نامند. واکنش دهنده های دیگر را که پس از پایان واکنش نیز مقداری از آنها در ظرف می ماند، واکنش دهنده های اضافی می نامند.



ادامه مطلب

دانلود تحقیق کامل درباره موشک

دانلود تحقیق کامل درباره موشک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۶

 

موشک

مقدمه

موشکهای فضایی مانند موشکهای آتش بازی عمل می‌کنند. سوخت با ماده‌ای به نام اکسنده که حاوی گاز تسریع کننده احتراق یعنی اکسیژن است، ترکیب می‌شود. آنگاه این ترکیب که یک پیشران محسوب می‌شود، می‌سوزد و گازهای داغی را تولید می‌کند، این گازها منبسط شده ، از طریق یک دماغه خارج و باعث می‌شوند موشک به طرف بالا حرکت کند. این واکنش برای اولین بار در قرن هفدهم توسط دانشمند انگلیسی ، اسحاق نیوتن ، در قانون سوم حرکتش بیان شد. او اظهار داشت که برای هر عملی (خروج گازها در اینجا) عکس العملی است مساوی و مخالف جهت آن (در اینجا ، حرکت موشک).

نیرویی که یک موشک را به طرف جلو حرکت می‌دهد، نیروی پیشران نامیده می‌شود. قدرت نیروی پیشران به سرعت خارج شدن گاز خروجی بستگی دارد. نیروی پیشران به موشک شتاب داده ، باعث افزایش سرعت آن می‌شود. مقدار شتاب نیز بستگی به جرم موشک دارد. هر چه موشک سنگینتر باشد، برای رسیدن به فضا ، به نیروی پیشران بیشتری نیاز است. تا وقتی که موتورهای موشک ، روشن و در حال تولید نیروی پیشران هستند، شتاب فضا پیما نیز هر لحظه زیادتر می‌شود.

موتور موشک یا از پیشران مایع استفاده می‌کند یا جامد ، اما بعضی اوقات ، یک موشک کامل ممکن است. در مراحل مختلف از هر دو نوع پیشران استفاده کند. کارشناسان موشکهایی را پیشنهاد کرده‌اند که از انرژی اتمی به عنوان سوخت استفاده می‌کنند، چرا که آنها از نظر مصرف انرژی بسیار مقرون به صرفه‌اند. اما ترس از خطر استفاده از سوخت اتمی مانع استفاده از این موشکها شده است.

موشکهایی با سوخت پیشران جامد

سوختهای پیشران از یک نوع سوخت و یک اکسنده تشکیل شده‌اند. برای روشن شدن موشک ، کافی است یک جرقه کوچک سوخت پیشران آنرا آتش بزند. سوخت آتش گرفته تا آخرین قطره می‌سوزد. گازهای حاصل از سوخت پیشران را از طریق دماغه انتهایی موشک خارج می‌شوند. اولین موشکها را احتمالا در قرن یازدهم میلادی در کشور چین ساخته‌اند. آنها موشکهایی بودند که از سوخت پیشران جامد استفاده می‌کردند. سوخت موشک یک نوع باروت بود که از مخلوطی از نیترات پتاسیم ، زغال چوب و سولفور تشکیل شده بود.

موشکهایی که از سوخت پیشران جامد استفاده می کنند، اغلب به عنوان موشکهای تقویت کننده‌ای استفاده می‌شوند که نیروی اولیه موشکهای بزرگتر را تأمین می‌کنند. موشکهای بزرگتر خود از سوخت پیشران مایع استفاده می‌کنند. بزرگترین موشکهای مصرف کننده سوخت جامد با ۴۵ متر ارتفاع جزء موشکهای تقویت کننده شاتل فضایی ایالات متحده محسوب می‌شوند. آنها حاوی ۵۸۶۵۰۰ کیلوگرم (۲/۱ میلیون پوند) سوخت پیشران هستند که بطور متوسط ۱۳ میلیون تن (۵/۳ میلیون پوند نیرو) نیروی پیشران را تولید می‌کنند.

این موشکها را طوری طراحی کرده‌اند که بعد از اتمام سوخت و افتادن در دریا ، از دریا بیرون کشیده شده ، دوباره برای مأموریتهای بعدی سوختگیری می‌شوند. ساخت موشکهایی که از سوخت جامد استفاده می‌کنند چندان دشوار نیست. آنها مقدار زیادی نیروی پیشران را در یک مدت زمان کم تولید می‌کنند. تنها ایراد این نوع موشکها این است که بعد از روشن شدن به راحتی خاموش نمی شوند. به عبارت دیگر ، نمی‌توان آن را به آسانی تحت کنترل درآورد.

نیروی پیش برنده

شاتل فضایی ایالات متحده از موشکهای تقویت کننده عظیم الجثه‌ای برخوردار است که از سوخت پیشران جامد استفاده می کنند. این پیشران از پر کلرات آمونیم به عنوان اکسنده و پودر آلومینیوم به عنوان سوخت تشکیل شده است.

موشکهای با سوخت مایع

اکثر موشکهایی که از آنها در پروازهای فضایی استفاده می‌شود، از سوخت پیشران مایع بهره می برند. سوخت و اکسنده که در مخزنهای جداگانه‌ای نگهداری می‌شوند، هر دو مایع هستند. پمپهای قدرتمندی آنها را به محفظه احتراق می‌برند؛ در آنجا آنها باهم ترکیب شده ، شروع به تولید گازهای خروجی می‌کنند. گازهای مذکور نیز به نوبه خود از دماغه انتهایی موشک خارج می‌شوند. بعضی از موشکها از یک ماده قابل اشتعال سریع برای شروع احتراق استفاده می‌کنند. سوخت پیشران سایر موشکها هگام ترکیب سوخت و اکسنده شروع به احتراق می‌کند.

فرآیند احتراق پیشران مایع

اکسنده و سوخت باهم ترکیب می‌شوند و در محفظه احتراق شروع به سوختن می‌کنند. سپس گازهای خروجی حاصل از فرآیند احتراق از دماغه خارج و به عنوان نیروی پیشران ، موشک را به طرف جلو حرکت می‌دهند.

مراحل مختلف یک موشک

برای سفر به فضا ، یک موشک چند مرحله‌ای مورد نیاز است. هر کدام از این مراحل یک موشک جداگانه محسوب می‌شود که هم دارای منبع سوخت است و هم موتور. بسته به وزن محموله ماهواه ، از موشکهای تقویت کننده‌ای در کنار مراحل مختلف موشک برای افزایش نیروی موتورها استفاده می‌شود. مرحله اول ، کل موشک را از زمین بلند می‌کند و به محض اتمام سوخت از بقیه موشک جدا شده، به زمین سقوط می‌کند. آنگاه موتور مرحله دوم روشن می‌شود. بخاطر وزن سبکتر موشک در این مرحله ، شتاب موشک نیز بیشتر می‌شود؛ این سیر صعودی شتاب با جدا شدن هر مرحله از موشک ادامه می‌یابد. مرحله پایانی موشک قسمت حامل ماهواره را به فضا و به طرف مقصدش حمل می کند.



ادامه مطلب

دانلود تحقیق کامل درباره مواد پارامغناطیس

دانلود تحقیق کامل درباره مواد پارامغناطیس

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۱۴

 

مواد پارامغناطیس

مواد پارامغناطیس گروهی از مواد هستند که موجب تقویت جزئی میدان مغناطیسی می‌شوند، یعنی اگر در داخل سیم پیچی، ماده‌ای از جنس پارامغناطیسی قرار دهیم، در این صورت میدان مغناطیسی تقویت می‌شود، هر چند این تقویت به اندازه مواد [فقط کاربران عضو میتوانند این لینک را مشاهده نمایند . ] نیست، اما قابل توجه است. به بیان دیگر، در مباحث مغناطیسی کمیتی به نام پذیرفتاری مغناطیسی تعریف می‌شود که نمادی از تقویت یا تضعیف میدان مغناطیسی است.

پارامغناطیس شکل ضعیفی از خاصیت مغناطیسی است. اتمهای مواد پارامغناطیس گشتاور دو قطبی مغناطیسی دائمی دارند که در میدان مغناطیسی خارجی دو قطبیها را با یکدیگر همسو کرده و میدان را تا اندازه‌ای تقویت می‌کنند. ماده پارامغناطیس در میدان مغناطیسی غیریکنواخت، به طرف ناحیه قویتر کشیده می‌شود.

در این مواد حرکت و جنبش دوقطبی ها راحت‎تر و آسانتر است. هنگامی که این مواد را در میدان مغناطیسی قرار می‎دهیم، بر دوقطبی های آن نیرو وارد می‎شود و تعداد زیادی از آنها در خطوط میدان به طوری که قطب‎های شمال در جهت خطوط قرار می گیرند. این امر سبب می شود که این مواد به آهنربایی قوی تبدیل شود؛ اما چون حرکت و جنبش این دو قطبی ها سریع است، با برداشتن این مواد از میدان مغناطیسی، این دوقطبی ها به سرعت از مسیر خطوط خارج می‎شود و به حالت کاتوره ای و سمت گیری های غیر مشخص و غیر منظم قبلی برمی‎گردد و در خارج از خطوط میدان به سرعت خاصیت مغناطیسی خود را از دست می‎دهد؛ به عبارتی خاصیت پارامغناطیس خاصیت جذب شدن به‌وسیلهٔ یک مغناطیس را گویند. تمام فلزات دارای یک اثر پارامغناطیس ضعیف می‌باشند که به دما وابسته نیست و با توجه به نظریه الکترون ‌آزاد و گشتاور مغناطیسی اسپین ذاتی الکترونهای آزاد توجیه می‌شود. محدوده حرکت الکترونهای آزاد در نوارهای انرژی است، در مرز این نواحی، امواج الکترون بوسیله بلور بازتاب براگ می‌کند که سبب بوجود آمدن گاف انرژی می‌شود. این گافهای انرژی در تعیین عایق یا رسانا بودن جسم اهمیت زیادی می‌دارند. مواد پارامغناطیس: آلومینیوم، پلاتین، منگنز، نیکل، دی اکسیدکربن، فلزهای قلیایی و قلیایی خاکی، اکسیژن و اکسید ازت.

در مواد[فقط کاربران عضو میتوانند این لینک را مشاهده نمایند . ] پذیرفتاری مغناطیسی، کمیتی منفی است و میدان مغناطیسی در اثر حضور چنین ماده‌ای تضعیف می‌شود، اما در مورد مواد پارامغناطیس، تراوایی مغناطیسی، مقداری مثبت است. بنابراین در حضور این ماده، میدان تقویت می‌شود، هر چند این تقویت به اندازه مواد [فقط کاربران عضو میتوانند این لینک را مشاهده نمایند . ] نخواهد بود.

مواد پارامغناطیس (paramagnetic) تاحدی بین مواد [فقط کاربران عضو میتوانند این لینک را مشاهده نمایند . ] و مواد [فقط کاربران عضو میتوانند این لینک را مشاهده نمایند . ] قرار میگیرند. این مواد به طور اندکی جذب میدان مغناطیسی می گردند و در اثر قطع میدان مغناطیسی خارجی ، خاصیت مغناطیسی خود را از دست می دهند. مواد حاجبی (contrast agent) که در MRI استفاده میگردد پارامغناطیس هستند.

خاصیت پارامغناطیسی

اگر نمونه‌ای از ماده شامل N اتم، را که گشتاور دو قطبی مغناطیسی هر کدام M است، در یک میدان مغناطیسی قرار دهیم، دو قطبی‌های اولیه اتم می‌کوشند با میدان مغناطیسی همسو شوند. این تمایل به همسو شدن را خاصیت پارامغناطیسی می‌گویند.

 

شرط پارامغناطیسی بودن

برای آنکه دستگاهی خواص پارامغناطیسی از خود بروز دهد، اتمها یا مولکولهای آن دستگاه باید گشتاورهای مغناطیسی دائمی داشته، و این گشتاورها تمایل داشته باشند که با میدان اعمال شده همسو شوند. گشتاورهای مولکولی مختلف واجفت شده هستند، یعنی هر یک حول میدان مغناطیسی بطور انفرادی و نه بطور هماهنگ حرکت تقدیمی می‌کنند، ولی به علت تماس گرمایی با محیط اطراف خود می‌توانند مبادله انرژی کنند. جز در دمای نزدیک به صفر مطلق توام با میدانهای بسیار قوی، مغناطش از مقدار مربوط به حالت اشباع آن که در آن حالت تمام گشتاورهای دو قطبی همسو هستند، بسیار کمتر است.

قانون کوری

در سال ۱۸۹۵ پیر کوری بطور تجربی کشف کرد که مغناطش M (گشتاور دو قطبی مغناطیسی در واحد حجم ماده) یک ماده پارامغناطیس با میدان مغناطیسی (B)، یعنی میدان مغناطیسی موثر که نمونه در آن قرار گرفته است، نسبت مستقیم و با دمای کلوین (T) نسبت معکوس دارد. این بیان به عنوان قانون کوری معروف است. این قانون از لحاظ فیزیکی از این جهت قابل قبول است که افزایش B باعث همسو شدن دو قطبی‌های اولیه در نمونه می‌شود و M (مغناطش) را افزایش می‌دهد، در حالی که افزایش T این همسویی را به هم می‌زند و M را کاهش می‌دهد. قانون کوری در صورتی که نسبت B/T خیلی بزرگ نباشد، از نظر تجربی تائید شده است.

 

فرومغناطیس – Ferromagnetic

فرومغناطیس، توانایی موادی خاص برای بروز میدان مغناطیس در غیاب میدان مغناطیسی خارجی است. این میدان، میدان مغناطیس خود به خود نامیده میشود. در بین



ادامه مطلب

دانلود تحقیق کامل درباره مواد پارامغناطیس فرومغناطیس ۱۲ص

دانلود تحقیق کامل درباره مواد پارامغناطیس فرومغناطیس ۱۲ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۱۲

 

مواد پارامغناطیس

مواد پارامغناطیس گروهی از مواد هستند که موجب تقویت جزئی میدان مغناطیسی می‌شوند، یعنی اگر در داخل سیم پیچی، ماده‌ای از جنس پارامغناطیسی قرار دهیم، در این صورت میدان مغناطیسی تقویت می‌شود، هر چند این تقویت به اندازه مواد [فقط کاربران عضو میتوانند این لینک را مشاهده نمایند . ] نیست، اما قابل توجه است. به بیان دیگر، در مباحث مغناطیسی کمیتی به نام پذیرفتاری مغناطیسی تعریف می‌شود که نمادی از تقویت یا تضعیف میدان مغناطیسی است.

پارامغناطیس شکل ضعیفی از خاصیت مغناطیسی است. اتمهای مواد پارامغناطیس گشتاور دو قطبی مغناطیسی دائمی دارند که در میدان مغناطیسی خارجی دو قطبیها را با یکدیگر همسو کرده و میدان را تا اندازه‌ای تقویت می‌کنند. ماده پارامغناطیس در میدان مغناطیسی غیریکنواخت، به طرف ناحیه قویتر کشیده می‌شود.

در این مواد حرکت و جنبش دوقطبی ها راحت‎تر و آسانتر است. هنگامی که این مواد را در میدان مغناطیسی قرار می‎دهیم، بر دوقطبی های آن نیرو وارد می‎شود و تعداد زیادی از آنها در خطوط میدان به طوری که قطب‎های شمال در جهت خطوط قرار می گیرند. این امر سبب می شود که این مواد به آهنربایی قوی تبدیل شود؛ اما چون حرکت و جنبش این دو قطبی ها سریع است، با برداشتن این مواد از میدان مغناطیسی، این دوقطبی ها به سرعت از مسیر خطوط خارج می‎شود و به حالت کاتوره ای و سمت گیری های غیر مشخص و غیر منظم قبلی برمی‎گردد و در خارج از خطوط میدان به سرعت خاصیت مغناطیسی خود را از دست می‎دهد؛ به عبارتی خاصیت پارامغناطیس خاصیت جذب شدن به‌وسیلهٔ یک مغناطیس را گویند. تمام فلزات دارای یک اثر پارامغناطیس ضعیف می‌باشند که به دما وابسته نیست و با توجه به نظریه الکترون ‌آزاد و گشتاور مغناطیسی اسپین ذاتی الکترونهای آزاد توجیه می‌شود. محدوده حرکت الکترونهای آزاد در نوارهای انرژی است، در مرز این نواحی، امواج الکترون بوسیله بلور بازتاب براگ می‌کند که سبب بوجود آمدن گاف انرژی می‌شود. این گافهای انرژی در تعیین عایق یا رسانا بودن جسم اهمیت زیادی می‌دارند. مواد پارامغناطیس: آلومینیوم، پلاتین، منگنز، نیکل، دی اکسیدکربن، فلزهای قلیایی و قلیایی خاکی، اکسیژن و اکسید ازت.

در مواد[فقط کاربران عضو میتوانند این لینک را مشاهده نمایند . ] پذیرفتاری مغناطیسی، کمیتی منفی است و میدان مغناطیسی در اثر حضور چنین ماده‌ای تضعیف می‌شود، اما در مورد مواد پارامغناطیس، تراوایی مغناطیسی، مقداری مثبت است. بنابراین در حضور این ماده، میدان تقویت می‌شود، هر چند این تقویت به اندازه مواد [فقط کاربران عضو میتوانند این لینک را مشاهده نمایند . ] نخواهد بود.

مواد پارامغناطیس (paramagnetic) تاحدی بین مواد [فقط کاربران عضو میتوانند این لینک را مشاهده نمایند . ] و مواد [فقط کاربران عضو میتوانند این لینک را مشاهده نمایند . ] قرار میگیرند. این مواد به طور اندکی جذب میدان مغناطیسی می گردند و در اثر قطع میدان مغناطیسی خارجی ، خاصیت مغناطیسی خود را از دست می دهند. مواد حاجبی (contrast agent) که در MRI استفاده میگردد پارامغناطیس هستند.

خاصیت پارامغناطیسی

اگر نمونه‌ای از ماده شامل N اتم، را که گشتاور دو قطبی مغناطیسی هر کدام M است، در یک میدان مغناطیسی قرار دهیم، دو قطبی‌های اولیه اتم می‌کوشند با میدان مغناطیسی همسو شوند. این تمایل به همسو شدن را خاصیت پارامغناطیسی می‌گویند.

 

شرط پارامغناطیسی بودن

برای آنکه دستگاهی خواص پارامغناطیسی از خود بروز دهد، اتمها یا مولکولهای آن دستگاه باید گشتاورهای مغناطیسی دائمی داشته، و این گشتاورها تمایل داشته باشند که با میدان اعمال شده همسو شوند. گشتاورهای مولکولی مختلف واجفت شده هستند، یعنی هر یک حول میدان مغناطیسی بطور انفرادی و نه بطور هماهنگ حرکت تقدیمی می‌کنند، ولی به علت تماس گرمایی با محیط اطراف خود می‌توانند مبادله انرژی کنند. جز در دمای نزدیک به صفر مطلق توام با میدانهای بسیار قوی، مغناطش از مقدار مربوط به حالت اشباع آن که در آن حالت تمام گشتاورهای دو قطبی همسو هستند، بسیار کمتر است.

قانون کوری

در سال ۱۸۹۵ پیر کوری بطور تجربی کشف کرد که مغناطش M (گشتاور دو قطبی مغناطیسی در واحد حجم ماده) یک ماده پارامغناطیس با میدان مغناطیسی (B)، یعنی میدان مغناطیسی موثر که نمونه در آن قرار گرفته است، نسبت مستقیم و با دمای کلوین (T) نسبت معکوس دارد. این بیان به عنوان قانون کوری معروف است. این قانون از لحاظ فیزیکی از این جهت قابل قبول است که افزایش B باعث همسو شدن دو قطبی‌های اولیه در نمونه می‌شود و M (مغناطش) را افزایش می‌دهد، در حالی که افزایش T این همسویی را به هم می‌زند و M را کاهش می‌دهد. قانون کوری در صورتی که نسبت B/T خیلی بزرگ نباشد، از نظر تجربی تائید شده است.

 

فرومغناطیس – Ferromagnetic

فرومغناطیس، توانایی موادی خاص برای بروز میدان مغناطیس در غیاب میدان مغناطیسی خارجی است. این میدان، میدان مغناطیس خود به خود نامیده میشود. در بین عناصر جدول تناوبی تنها اهن، کوبالت، نیکل، و گادولنیوم در دماهای عادی فرومغناطیس هستند. اما الیاژها و ترکیبات پرشماری را با خاصیت فرومغناطیسی یافته میشود که برخی به شکل طبیعی وجود دارند و برخی مصنوعی هستند.

کار کرد موتورها، ترانسفورماتور ها، بیشتر وسایط ضبط و بلند گو بر اساس استفاده از مواد فرومغناطیس است. پدیده فرومغناطیس تنها در دماهای پایین تر از دمایی که به دمای کوری Tc معروف است و به جنس ماده بستگی دارد ظاهر میشود. اکسید فرومغناطیس مثل مگنتیت که در پوسته زمین به صورت طبیعی وجود دارند، پس از فعالیت اتش فشانی سرد و



ادامه مطلب

دانلود تحقیق کامل درباره مواد اکسید کننده

دانلود تحقیق کامل درباره مواد اکسید کننده

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۸

 

مواد اکسید کننده

اکسنده های مایع و جامد چه هستند؟

اکسنده ها مواد جامد یا مایعی هستند که آماده دریافت اکسیژن خالص یا دیگر مواد اکسنده مانند بروم ، کلر یا فلوئور می باشند. آنها همچنین شامل موادی هستند که با اکسنده های قابل اشتعال ( سوختنی ) واکنش شیمیایی می دهند . بدین معنا که اکسیژن با دیگر مواد تشکیل ترکیب شیمیایی داده و در نتیجه شانس ایجاد یک حریق یا انفجاررا افزایش می دهد . این واکنش ممکن است به طور خودبخود دردمای اتاق یا گرمای کم اتفاق بیفتد . مایعات و جامدات اکسید کننده می توانند حریق شدید و انفجار خطرناک را ایجاد نمایند .

معمولترین مایعات و جامدات اکسنده عبارتند از :

– بروم – اسید نیتریک

– بروماتها – نیتریتهاونیتراتها

– ایزوسیانوراتهای کلریت – پربراتها

– کلراتها – پرکلراتها

– دی کروماتها – پریوداتها

– هیدروپراکسیدها – پرمنگناتها

– هیپوکلریتها – پراکسیدها

– پراکسیدهای غیر آلی – پراکسی اسیدها

– پراکسیدهای کتون – پرسولفاتها

مواد شیمیایی دیگری وجود داردکه اکسنده هستند. برای مثال هوای مایع باعث انفجارهای زیادی می گردد . زیرا مشخصات یک اکسنده را داراست.هوای مایع درحدود ۳۰ درصد اکسیژن دارد ، بنابراین یک اکسنده قوی به شمار می آید. بنابراین وقتی که هوای مایع تبخیر می شود در حجمی از اکسیژن ،غنی می گردد لذا حجم بیشتری از اجزاء با سرعت کمی تبخیر می گردند . نیتروژن مایع ایمن تر است و بعنوان یک مایع خنک کننده بر اکسیزن مایع ترجیح داده می شود .

هر ماده ناشناخته دیگرنیز بهمین ترتیب عمل می کند ، مخصوصاً کریستالهای یک حلال از پراکسیدشناخته شده است ( مانند اترها ) که خطرناک بودن آن به طور مسلم تشخیص داده شده است .

مواد اکسنده چه کار می توانند انجام دهند ؟

مواد اکسنده می توانند :

به سرعت گستره یک آتش را افزایش می دهند و آن را شدت می بخشند .

باعث می شوند ، ذراتی که به طور عادی نمی سوزند ، آمادگی سوختن با سرعت زیادرا پیدا کنند .

باعث می شوند که مواد قابل اشتعال به خودی خود بدون حضور هیچ عاملی بسوزند . منابع افروزش می تواند یک جرقه یا شعله باشد .

وقتیکه یک ماده اکسنده در تماس با ذرات قابل اشتعال قرار می گیرد چه اتفاقی می افتد ؟ این به ثبات ماده مربوط می شود . کمی ثبات یک ماده اکسنده بیشتر از شانس واکنش خطرناک آن می باشد.

آیا مواد اکسنده طبقه بندی شده اند ؟

انجمن ملی حفاظت از آتش NFPA کد۴۳۰ ( ۱۹۹۵ ) کدی است برای انبار کردن جامدات و مایعات اکسنده ، مواد اکسنده را طبق توانایی آنها در ایجاد اشتعال خودبخودی و چگونگی افزایش سرعت سوختن طبقه بندی کرده است .

اکسنده های دسته اول :

در تماس با مواد سوختنی ، به طور جزئی سرعت سوختن را افزایش می دهند .

در تماس با مواد سوختنی باعث ایجاد افروزش خودبخودی نمی گردند .

اکسنده های دسته دوم :

در تماس با مواد قابل اشتعال به طور متوسط سرعت سوختن را افزایش می دهند .

ممکن است در تماس با یک ماده قابل اشتعال ، باعث افروزش خودبخودی گردند.

اکسنده های دسته سوم :

در تماس با مواد قابل اشتعال ، به شدت سرعت سوختن را افزایش می دهند .

در تماس با ماده قابل اشتعال یا مواجهه با گرمای کافی ، باعث تجزیه شدید و ادامه آن می گردند.

اکسنده های دسته چهارم :

در تماس با مقدار معینی آلاینده ، منفجر می شوند .

در مواجهه با مقدار کمی گرما ، ضربه ( شوک ) یا اصطحکاک ، منفجر می شوند .

سرعت سوختن مواد قابل اشتعال را افزایش می دهد.

باعث اشتعال خودبخودی مواد سوختنی می شوند .

برخی از نمونه های طبقه بندی شده مواد اکسنده کدامند ؟

انجمن حفاظت ملی آتش ( NFPA ) کد ۴۳۰ ( ۱۹۹۵) کدی برای انبار کردن مایعات و جامدات اکسنده می باشد . لیستی از نمونه های زیادی از انواع مواد اکسنده طبق سیستم طبقه بندی NFPA تهیه کرده است .

برخی از این نمونه ها شامل :

نمونه هایی از دسته اول اکسنده ها طبق دسته بندی NFPA :

نیترات آلومینیوم پرسولفات آمونیوم

پراکسید باریوم نیترات منیزیوم

دی کرومات پتاسیم نیترات پتاسیم

نیترات نقره دی کرومات سدیم



ادامه مطلب

دانلود تحقیق کامل درباره مفهوم بارورسازی دینامیکی ابرها

دانلود تحقیق کامل درباره مفهوم بارورسازی دینامیکی ابرها

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۱۳

 

مفهوم بارورسازی دینامیکی ابرها

واقعیت مفهوم بارورسازی دینامیکی عبارت است از بارورسازی ابرهای ابر سرد با مقادیر کافی هسته یخ یا خنک کننده به منظور انجماد سریع ابر،به علت بارورسازی،آب مایع ابر سرد به ذرات یخ تبدیل می شود،گرمای نهان را آزاد می کند.و شناوری را افزایش داده و بدین طریق حرکت صعودی ابر را تقویت می کند.در شرایط مناسب باعث رشد بیشتر ابر بخار آب بیشتر و بازده بیشتر بارندگی می شود.علاوه بر آن ،ایجاد بارندگی ممکن است سبب حرکت نزولی شدیدتر و فعل و انفعال با محیط همرفت فعال تری را ایجاد کند.

مفهومم بارورسازی دینامیکی اولین بار توسط سیمپسون در ۱۹۶۷ محک زده شد.فرضیه زنجیره وقایع در این آزمایشهای اولیه توسط وودلی و همکاران در ۱۹۸۲ تشریح و خلاصه شد.تعداد کمی از مراحل فرض شده در زنجیره وقایع در آزمایشهای گذشته بررسی یا تایید و توسط مدلهای عددی اثبات شده است.مشاهدات تجربی ،انجماد سریع ابرهای بارور شده را نشان داده اند و شواهدی دال بر رشد ابر به ارتفاعات بالاتردر نتیجه بارورسازی دینامیکی ارائه گردیده است بدلیل مشکل اندازه گیری و مستند کردن زنجیره واکنش های فرضی،آزمایشات اولیه شامل آزمایش FACE-1 و FACE-2 در زمره آزمایشات نوع جعبه سیاه قرار گرفته است

بعد از برخی نتایج دلگرم کننده اولیه،این مفهوم در بسیاری از پروژه ها بررسی شده است.نتایج آزمایشهای تگزاس نشان داد که بارورسازی با یدید نقره ارتفاع ابر را تا حدود ۷% نواحی را تا ۴۳% افزایش داد.با وجود این نتایج دلگرم کننده ،آنها سوالات جدیدی را نیز مطرح کردند.افزایش در ارتفاع قله ابر بطور قابل توجهی کمتر از فرضیه های اصلی یا یافت شده در آزمایشهای اولیه می باشد

در واکنش به این یافته ها فرضیه اولیه به منظور توضیح عدم افزایش در ارتفاع قله ابرهای بارور شده را تعدیل کردند.زمانی که یک ابر بارور نشده بتواند ۵ مرحله شامل مرحله رشد کومه ای،مرحله باران ابر سرد ،مرحله بارندگی قله ابر ،مرحله حرکت نزولی و مرحله پراکندگی طی کند،ابرهای بارور شده چندین مرحله بیشتر سپری می کنند.دو مرحله اول همان مراحل قبلی هستند،مرحله سوم اثرات اولیه بارورسازی را بروز می دهد،و مرحله یخی شدن نام دارد.این مرحله همچنین شامل انجماد قطرات باران است که بعدا منجر به مرحله تخلیه می شود.

ادامه مراحل بعدی شامل مرحله نزول و ادغام،مرحله کومولونیمبوس رشد یافته و در پایان مرحله همرفتی پیچیده است.در مواردی که شناوری در مرحله یخی شدن نتواند آب را حمل کند پراکندگی رخ می دهد.

رزنفلد و وودلی در سال ۱۹۹۳ تعدیلهایی برای مدل مفهومی که در برگیرنده توجه بیشتر به فرایندهای خرد فیزیکی بود،پیشنهاد کردند. مدل مفهومی تعدیل شده مشتمل بر تولید و حمل جرم بارندگی بیشتر در منطقه بارور شده و بالای آن است که مهلت بیشتری برای توسعه مداوم ابر فراهم می شود. در مرحله بعد تخلیه جرم افزوده یافته باعث افزایش حرکت نزولی و بارندگی شده در حالیکه همزمان مهلت رشد اضافی در ناحیه ای که مقداری از گرمای نهان رها شده قبلی را حفظ می کند فراهم می شود.این مفهوم تعدیل شده فرض می کند که وجود قطرات بزرگی تعدیل شده فرض می کند که وجود قطرات بزرگی تبدیل سریع آب ابرسرد به یخ را در ابر سهولت می بخشد

با وجودیکه این مدل مفهومی پذیرفتنی است و زنجیره منطقی وقایع در افزایش بارندگی را ارائه می کند،به علت اینکه بسیاری از مراحل در زنجیره برای اندازه گیری خیلی مشکل است،این مدل مفهومی بسیار پیچیده می باشد.اگر یک ارتباط در فرایند نادرست باشد،ردیابی اثرات بارورسازی بسیارمشکل خواهد بود.بویژه در ابرهاهمرفتی که بطور طبیعی تغییر پذیری زیادی رانشان می دهند.آزمایشهای متمرکز برای جمع آوری اطلاعات همانند مطالعات مدلسازی برای اثبات و حمایت این فرضیه مورد نیاز است

با وجود اینکه افزایش بارندگی از ابرهای منفرد در یک مقیاس محدود مستند شده اند ولی شواهدی دال بر تاثیر بر روی بارندگی منطقه مستند نشده است بنابراین این روش برای افزایش بارندگی به منظور تامین منابع آب هنوز بصورت یک فن آوری اثبات نشده باقی مانده است.

بارورسازی ابر گرم اصطلاح ( بارورسازی جاذب الرطوبه) بسته به طراحی آزمایش ،نوع ماده بارورسازی مورد استفاده و نوع ابری که مورد آزمایش بوده است،معانی کمی مختلف از ابتدا بخود گرفت.در تمام موارد ،هدف نهایی افزایش بارندگی توسط عواملی می باشد که فرآیند همامیزی را افزایش دهد.وارد کردن مستقیم اندازه مناسبی از CCN که بتواند به عنوان نطفه های مصنوعی قطره باران مصنوعی عمل کند با استفاده از اسپد های آب ،محلولهای نمکی رقیق ،یا نمکهای پودر شده رایج ترین تکنیکهای بارورسازی جاذب الرطوبه بودند که در گذشته استفاده شدند.هدف اولیه وارد کردن نطفه های مصنوعی قطره باران (ذرات نمک با قطر بزرگتر از ?m 10 ) کوتاه کردن زمان عمل تعداد CCN در تعیین جمعیت اولیه قطرکهای ابر و بنابراین تسریع آغاز فرایند همامیزی است .این مفهومم قبلا در برنامه های ایالات متحده و سایر کشورها استفاده گردیده است و هنوز در کشورهای جنوب شرقی آسیا و هند مورد استفاده قرار می گیرد با وجود اینکه این فن آوری به طور گسترده در کشورهای بسیاری در جنوب شرقی آسیا استفاده شده است ،آزمایشهای آماری گذشته با وجود اینکه بعضی از آنها حاکی از اثرات مثبت بوده اند عموما بدون نتیجه بوده اند.نتایج مشاهدات و مدلسازی در مورد این که تحت شرایط معین طیف اندازه قطره (نطفه های مصنوعی) باروری بهینه،بارندگی در بعضی از ابرها می تواند افزایش یابد،حمایت های را جلب کرده ند.

نقاط ضعف این رهیافت این است که مقدار زیادی نمک مورد نیاز بوده و پخش نمک در نواحی در جریان ورودی به ابر مشکل می باشد.علاوه بر آن ،آهنگ رشد ذرات به قطرات باران بایستی به خوبی با نیم رخ جریان بالا و هماهنگ باشد و گرنه رشد آنها کارا نخواهد بود اندازه قطره باروری بهینه تابع سرعت صعود و



ادامه مطلب

دانلود تحقیق کامل درباره مفاهیم بنیادی فضا و زمان

دانلود تحقیق کامل درباره مفاهیم بنیادی فضا و زمان

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: ۳۸

 

فصل سه

مفاهیم بنیادی فضا و زمان

مقدمه

بررسی و شناخت پدیده های فیزیکی و روابط بین آنها بدون توجه به مفاهیم  و درک شهودی از فضا و زمان جندان مانوس به نظر نمی رسد. مفهوم و درک فضا و زمان نیز مانند سایر کمیت های فیزیکی روندی پویا دارد و در طول تاریخ دستخوش تغییرات زایدی شده است. بویژه بعد از نسبیت مفاهیم فضا و زمان و درک بشر از آنها دچار تغییر زیادی شده است. البته در اینجا نمی خواهیم مسئله ی فضا-زمان را مورد بررسی قرار دهیم، تنها هدفمان از ارائه ی این فصل این است که زمینه ی آشنایی با نگرش فلسفی و علمی نسبت به فضا و زمان فراهم گردد تا بعد ازبیان نسبیت فضا-زمان مورد بررسی قرار گیرد. همجنین این مطالب قبل از قوانین نیوتن آورده شده است تا زمینه ی مطرح شدن دیدگاه منطقی نیوتن نسبت به فضا و زمان مطلق فراهم گردد .

 

 فضا چیست؟

 فضا (Space) 

واژه‌ای است که در زمینه‌های متعدد و رشته‌های گوناگون از قبیل فلسفه، جامعه‌شناسی، معماری و شهرسازی بطور وسیع استفاده می‌شود. لیکن تکثّر کاربرد واژه فضا به معنی برداشت یکسان از این مفهوم در تمام زمینه‌های فوق نیست، بلکه تعریف فضا از دیدگاه‌های مختلف قابل بررسی است. مطالعات نشان می‌دهد با وجود درک مشترکی که به نظر می‌رسد از این واژه وجود دارد، تقریباً توافق مطلقی در مورد تعریف فضا در مباحث علمی به چشم نمی‌خورد و این واژه از تعدد معنایی نسبتاً بالایی برخوردار است و تعریف مشخص و جامعی وجود ندارد که دربرگیرنده تمامی جنبه‌های این مفهوم باشد. از این رو در این یادداشت به ذکر برخی کلیات در مورد مفهوم فضا بسنده می کنیم. ‎

فضا یک مقوله بسیار عام است. فضا تمام جهان هستی را پر می‌کند و ما را در تمام طول زندگی احاطه کرده‌ است. فضا به محیط زیست اطراف ما احساس راحتی و امنیت می‌بخشد که اهمیت آن در یک زندگی لذت بخش ‎از نور آفتاب و محلی برای آرامش کمتر نیست .

هرکاری که انسان انجام می‌دهد، دارای یک جنبه فضایی نیز است، به عبارتی هر عملی که انجام می‌شود، احتیاج به فضا دارد. دلبستگی بشر به فضا از ریشه‌های عمیقی برخوردار است. این دلبستگی از نیاز انسان به ایجاد ارتباط با سایر انسانها که از طریق زبان ‎های گوناگون صورت می‌پذیرد، سرچشمه می‌گیرد. همچنین بشر خود را با استفاده از فیزیولوژی و تکنولوژی، با اشیاء فیزیکی وفق می‌دهد و از این طریق یک رابطه و تعادل پویا بین انسان و محیط (اشیاء)، علاوه بر ارتباط میان انسانها، بوجود می‌آید. این اشیاء بر‌ اساس یک سری روابط خاص به درونی و بیرونی، دور و نزدیک، منفرد و متحد، پیوسته و گسسته تقسیم شده‌اند. برای اینکه بشر بتواند به تصورات و ذهنیات خود عینیت بخشد، بایستی که این روابط را درک کند و آنها را در قالب یک مفهوم فضایی هماهنگ نماید. لذا فضا بیانگر نوع ویژه‌‌ای از ایجاد ارتباط نیست، بلکه صورتی است جامع و دربرگیرنده هر نوع ایجاد ارتباط، چه میان انسانها و چه میان انسان و محیط.

فضا ماهیتی جیوه مانند دارد که چون نهری سیال، تسخیر و تعریف آن را مشکل می‌نماید. اگر قفس آن به اندازه کافی محکم نباشد، براحتی به بیرون رسوخ می‎کند و ناپدید می‌شود. فضا می‌تواند چنان نازک و وسیع به نظر آید که احساس وجود بعد از بین برود (برای مثال در دشتهای وسیع، فضا کاملاً بدون بعد به نظر می‌رسد) و یا چنان مملو از وجود سه بعدی باشد که به هر چیزی در حیطه خود مفهومی خاص بخشد.

با اینکه تعریف دقیق و مشخص فضا دشوار و حتی ناممکن است، ولی فضا قابل اندازه‌گیری است. مثلاً می‌گوییم هنوز فضای کافی موجود است یا این فضا پر است. نزدیکترین تعریف این است که فضا را خلائی در نظر بگیریم که می‌تواند شیء را در خود جای دهد و یا از چیزی آکنده شود.

نکته دیگری که در مورد تعریف فضا باید خاطرنشان کرد، این است که همواره بر اساس یک نسبت که چیزی از پیش تعیین شده و ثابت نیست، ارتباطی میان ناظر و فضا وجود دارد. بطوری‌که موقعیت مکانی شخص، فضا را تعریف می‌کند و فضا بنا به نقطه دید وی به صورت‌های مختلف قابل ادراک می‌باشد .

 سیر تحول تاریخی مفهوم فضا

 فضا مفهومی است که از دیرباز توسط بسیاری از اندیشمندان مورد توجه قرار گرفته و در دوره  ‎های مختلف تاریخی بر اساس رویکردهای اجتماعی و فرهنگی رایج، به شیوه ‎های گوناگون تعریف شده است مصری‌ها و هندی‌ها با اینکه نظرات متفاوتی در مورد فضا داشتند اما در این اعتقاد اشتراک داشتند که هیچ مرز مشخصی بین فضای درونی تصور (واقعیت ذهنی) با فضای برونی (واقعیت عینی) وجود ندارد. در واقع فضای درونی و ذهنی رویاها، اساطیر و افسانه‌ها با دنیای واقعی روزمره ترکیب شده بود. آنچه بیش از هر چیز در فضای اساطیری توجه را به خود معطوف می‌کند، جنبه ساختی و نظام یافته فضاست، ولی این فضای نظام یافته مربوط به نوعی صورت اساطیری است که برخاسته از تخیل آفریننده‌ می‌باشد .

در زبان یونانیان باستان، واژه‌ای برای فضا وجود نداشت. آنها بجای فضا از لفظ مابین استفاده می‌کردند. فیلسوفان یونان فضا را شیء بازتاب می‌خواندند.

پارمیندز (Parmenides)  وقتی که دریافت، فضای به این صورت را نمی‌توان تصور کرد، آن را بدین دلیل که وجود خارجی ندارد، به عنوان حالتی ناپایدار معرفی کرد.

لوسیپوس (Leucippos) نیز فضا را اگرچه از نظر جسمانی وجود خارجی ندارد، لیکن حقیقی تلقی نمود افلاطون مسئله را بیشتر از دیدگاه تیمائوس(Timaeus)  بررسی کرد و از هندسه به عنوان علم الفضاء برداشت نمود، ولی آن را به ارسطو واگذاشت تا تئوری فضا)توپوز) را کامل کند.



ادامه مطلب

دانلود تحقیق هنر باغ‌سازی دوران رنسانس

دانلود تحقیق هنر باغ‌سازی دوران رنسانس

دانلود تحقیق هنر باغ‌سازی دوران رنسانس

دانلود تحقیق هنر باغ‌سازی دوران رنسانس

در این بخش تحقیقی در مورد هنر باغ‌سازی دوران رنسانس با عنوان توسعه باغ‌سازی در عصر رنسانس(عصر طلایی) برای دانلود قرار داده شده است. این تحقیق با فرمت PDF ، اسلایدوار و در ۲۰ اسلاید می‌باشد. در ذیل فهرست مطالب و همچنین تعدادی از اسلایدهای نمونه آن آورده شده است.

 

 

فهرست مطالب:

  • مقدمه
  • ویژگی‌های دوران رنسانس
  • ویژگی های باغ‌سازی ایتالیا
  • باغ گیاهشناسی پادوآ
  • ویلا لانته(Lante)
  • ویلا دسته(Deste)
  • ویلا مدیسی(Medici)
  • ویلا فارنس در کاپرارولا

 



ادامه مطلب

تمام حقوق مادی , معنوی , مطالب و طرح قالب برای این سایت محفوظ است - طراحی شده توسط پارس تمز